Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Integr Plant Biol ; 65(3): 825-837, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36250681

RESUMEN

Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al GTP Heterotriméricas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inmunidad de la Planta , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362058

RESUMEN

Cultivated soybean (Glycine max (L.)), the world's most important legume crop, has high-to-moderate salt sensitivity. Being the frontier for sensing and controlling solute transport, membrane proteins could be involved in cell signaling, osmoregulation, and stress-sensing mechanisms, but their roles in abiotic stresses are still largely unknown. By analyzing salt-induced membrane proteomic changes in the roots and leaves of salt-sensitive soybean cultivar (C08) seedlings germinated under NaCl, we detected 972 membrane proteins, with those present in both leaves and roots annotated as receptor kinases, calcium-sensing proteins, abscisic acid receptors, cation and anion channel proteins, proton pumps, amide and peptide transporters, and vesicle transport-related proteins etc. Endocytosis, linoleic acid metabolism, and fatty acid biosynthesis pathway-related proteins were enriched in roots whereas phagosome, spliceosome and soluble NSF attachment protein receptor (SNARE) interaction-related proteins were enriched in leaves. Using label-free quantitation, 129 differentially expressed membrane proteins were found in both tissues upon NaCl treatment. Additionally, the 140 NaCl-induced proteins identified in roots and 57 in leaves are vesicle-, mitochondrial-, and chloroplast-associated membrane proteins and those with functions related to ion transport, protein transport, ATP hydrolysis, protein folding, and receptor kinases, etc. Our proteomic results were verified against corresponding gene expression patterns from published C08 RNA-seq data, demonstrating the importance of solute transport and sensing in salt stress responses.


Asunto(s)
Glycine max , Proteómica , Glycine max/genética , Proteómica/métodos , Proteínas de la Membrana/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Hojas de la Planta/metabolismo , Plantones/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Animals (Basel) ; 12(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36009744

RESUMEN

Rodents' lifestyles vary in different environments, and to adapt to various lifestyles specific digestion strategies have been developed. Among these strategies, the morphology of the digestive tracts and the gut microbiota are considered to play the most important roles in such adaptations. However, how subterranean rodents adapt to extreme environments through regulating gut microbial diversity and morphology of the digestive tract has yet to be fully studied. Here, we conducted the comparisons of the gastrointestinal morphology, food intake, food assimilation, food digestibility and gut microbiota of plateau zokor Eospalax baileyi in Qinghai-Tibet Plateau and laboratory rats Rattus norvegicus to further understand the survival strategy in a typical subterranean rodent species endemic to the Qinghai-Tibet Plateau. Our results revealed that plateau zokor evolved an efficient foraging strategy with low food intake, high food digestibility, and ultimately achieved a similar amount of food assimilation to laboratory rats. The length and weight of the digestive tract of the plateau zokor was significantly higher than the laboratory rat. Particularly, the weight and length of the large intestine and cecum in plateau zokor is three times greater than that of the laboratory rat. Microbiome analysis showed that genus (i.e., Prevotella, Oscillospira, CF231, Ruminococcus and Bacteroides), which are usually associated with cellulose degradation, were significantly enriched in laboratory rats, compared to plateau zokor. However, prediction of metagenomic function revealed that both plateau zokor and laboratory rats shared the same functions in carbohydrate metabolism and energy metabolism. The higher digestibility of crude fiber in plateau zokor was mainly driven by the sizes of cecum and cecum tract, as well as those gut microbiota which associated with cellulose degradation. Altogether, our results highlight that both gut microbiota and the morphology of the digestive tract are vital to the digestion in wild rodents.

5.
Animals (Basel) ; 12(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35883324

RESUMEN

The Datong yak (Bos grunniens) is the first artificial breed of yaks in the world and has played an important role in the improvement of domestic yak quality on the Qinghai-Tibet Plateau. The Datong yak breeding farm in the Qinghai province of China is the main place for the breeding and feeding of Datong yaks. It hosts domestic Datong yaks and wild male yaks, mainly in mixed groups. Different managements have different effects on livestock. The gut microbiota is closely related to the health and immunity of Datong yaks, and mixed grouping can affect the composition and diversity of the gut microbiota of Datong yaks. To reveal the effects of mixed grouping on the gut microbiota of Datong yaks and wild yaks and identify the main dominant factors, we compared the gut microbial diversities of domestic males and females and wild males based on 16S rRNA V3-V4 regions using fresh fecal samples. The data showed significant differences in the gut microbial diversity of these three groups, and the α-diversity was the highest in wild males. Different factors influence the gut microbiota, and the main influencing factors were different in different groups, including sex differences, host genetics, and physical interactions. We also compared ecological assembly processes in the three groups. The results showed that mixed grouping contributed to the improvement of gut microbial diversity in domestic females. Our study provides effective and feasible suggestions for the feeding and management of the Datong yaks.

6.
Front Microbiol ; 13: 918090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859737

RESUMEN

Seasonal variation in extreme environments is a threat to endangered species. The gut microbiota is important in the adaptive strategies of wild herbivores, and herbivores will contact the soil microbiota when they are feeding. However, there are no studies about the effects of soil microbiota on the gut microbiota of wild herbivores. Understanding the seasonal adaptive strategies of wild herbivores based on their gut microbiota and the effects of soil microbiota on the herbivorous gut microbiota is indispensable for making optimal conservation recommendations. To address those issues, we compared the diversity and functions of gut microbiota in goitered gazelles between winter and summer with a non-invasive fecal sampling method from the Qaidam Basin based on 16S rRNA V3-V4 regions. The data showed that seasonal variations caused the significant changes in gut microbiota at α-and ß-diversity levels. The main gut microbial function was "Metabolism." It showed significant seasonal changes. The goitered gazelles adapted to the seasonal changes by increasing the relative abundance of Firmicutes, Christensenellaceae, Bacteroides and the function about "Metabolism" in the winter to improve the adaptability. We also compared the effects of soil microbiota on the gut microbiota between winter and summer, covering source tracking analysis and the seasonal differences in ecological assembly processes. The contribution of soil microbiota on the gut microbiota of goitered gazelles was 5.3095% and 15.6347% in winter and summer, respectively, which was greater than on species of animals living underground. Seasonal variation also influenced the ecological processes of microbiota both in the gut and soil. Due to the differences in environments, the ecological processes between fecal microbiota and soil microbiota showed significant differences, and they were dominated by stochastic processes and deterministic processes, respectively. The soil microbiota has contributed to the gut microbiota, but not a decisive factor. Our research laid the foundation on the seasonal and soil microbiota effects on the adaptive strategies of goitered gazelles, and is the first study to explain the soil microbiota influence on the gut microbiota of wild herbivores.

7.
Aquac Nutr ; 2022: 3768368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36875635

RESUMEN

L-carnitine is a low molecular weight amino acid that plays an essential role in the oxidation of long-chain fatty acids. The regulatory effects and molecular mechanisms of L-carnitine on fat and protein metabolism in common carp (Cyprinus carpio) were investigated in this study. Common carp (n = 270) were randomly divided into three groups and fed either (1) common carp diet, (2) high-fat/low-protein diet, or (3) L-carnitine-high-fat/low-protein diet. Growth performance, plasma biochemistry, muscle composition, and ammonia excretion rate were all examined after 8 weeks. Additionally, each group's hepatopancreas was subjected to transcriptome analysis. The results showed that decreasing the feed protein/fat ratio resulted in a considerable increase in feed conversion ratio and a significant decrease in common carp-specific growth rate to 1.19 ± 0.02 (P < 0.05). Similarly, total plasma cholesterol sharply increased to 10.15 ± 2.07, while plasma urea nitrogen, muscle protein, and ammonia excretion levels dropped (P < 0.05). After adding L-carnitine to the high-fat/low-protein diet, it was found that the specific growth rate and protein content of the dorsal muscle increased significantly (P < 0.05). In contrast, the plasma total cholesterol and ammonia excretion rate decreased considerably at most time points after feeding (P < 0.05). The expression of genes in the hepatopancreas differed substantially between the different groups. Through GO analysis, it was demonstrated that L-carnitine increased the ability of fat decomposition by up-regulating the expression of cpt1 in the hepatopancreas and decreased the expression of fasn and elovl6 to reduce the production and extension of lipids. Simultaneously, mtor was more abundant in the hepatopancreas, implying that L-carnitine can increase protein synthesis. According to the findings, adding L-carnitine to high-fat/low-protein diets can stimulate growth by enhancing lipolysis and protein synthesis.

8.
Innovation (Camb) ; 2(4): 100153, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34901902

RESUMEN

The Human Genome Project opened an era of (epi)genomic research, and also provided a platform for the development of new sequencing technologies. During and after the project, several sequencing technologies continue to dominate nucleic acid sequencing markets. Currently, Illumina (short-read), PacBio (long-read), and Oxford Nanopore (long-read) are the most popular sequencing technologies. Unlike PacBio or the popular short-read sequencers before it, which, as examples of the second or so-called Next-Generation Sequencing platforms, need to synthesize when sequencing, nanopore technology directly sequences native DNA and RNA molecules. Nanopore sequencing, therefore, avoids converting mRNA into cDNA molecules, which not only allows for the sequencing of extremely long native DNA and full-length RNA molecules but also document modifications that have been made to those native DNA or RNA bases. In this review on direct DNA sequencing and direct RNA sequencing using Oxford Nanopore technology, we focus on their development and application achievements, discussing their challenges and future perspective. We also address the problems researchers may encounter applying these approaches in their research topics, and how to resolve them.

9.
Nucleic Acids Res ; 49(17): 9755-9767, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34403482

RESUMEN

Pericentromeric DNA, consisting of high-copy-number tandem repeats and transposable elements, is normally silenced through DNA methylation and histone modifications to maintain chromosomal integrity and stability. Although histone deacetylase 6 (HDA6) has been known to participate in pericentromeric silencing, the mechanism is still yet unclear. Here, using whole genome bisulfite sequencing (WGBS) and chromatin immunoprecipitation-sequencing (ChIP-Seq), we mapped the genome-wide patterns of differential DNA methylation and histone H3 lysine 18 acetylation (H3K18ac) in wild-type and hda6 mutant strains. Results show pericentromeric CHG hypomethylation in hda6 mutants was mediated by DNA demethylases, not by DNA methyltransferases as previously thought. DNA demethylases can recognize H3K18ac mark and then be recruited to the chromatin. Using biochemical assays, we found that HDA6 could function as an 'eraser' enzyme for H3K18ac mark to prevent DNA demethylation. Oxford Nanopore Technology Direct RNA Sequencing (ONT DRS) also revealed that hda6 mutants with H3K18ac accumulation and CHG hypomethylation were shown to have transcriptionally active pericentromeric DNA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Código de Histonas , Histona Desacetilasas/metabolismo , Acetilación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Centrómero , Cromatina , Metilación de ADN , Silenciador del Gen , Histona Desacetilasas/genética , Histona Desacetilasas/fisiología , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Mutación
10.
Genome Biol ; 22(1): 160, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034794

RESUMEN

BACKGROUND: Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumulation of mutations in plants remains unknown. RESULTS: Multigenerational exposure of Arabidopsis MA (mutation accumulation) lines and MA populations to extreme heat and moderate warming results in significantly increased mutation rates in single-nucleotide variants (SNVs) and small indels. We observe distinctive mutational spectra under extreme and moderately elevated temperatures, with significant increases in transition and transversion frequencies. Mutation occurs more frequently in intergenic regions, coding regions, and transposable elements in plants grown under elevated temperatures. At elevated temperatures, more mutations accumulate in genes associated with defense responses, DNA repair, and signaling. Notably, the distribution patterns of mutations among all progeny differ between MA populations and MA lines, suggesting that stronger selection effects occurred in populations. Methylation is observed more frequently at mutation sites, indicating its contribution to the mutation process at elevated temperatures. Mutations occurring within the same genome under elevated temperatures are significantly biased toward low gene density regions, special trinucleotides, tandem repeats, and adjacent simple repeats. Additionally, mutations found in all progeny overlap significantly with genetic variations reported in 1001 Genomes, suggesting non-uniform distribution of de novo mutations through the genome. CONCLUSION: Collectively, our results suggest that elevated temperatures can accelerate the accumulation, and alter the molecular profiles, of DNA mutations in plants, thus providing significant insight into how environmental temperatures fuel plant evolution.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/genética , Genoma de Planta , Calor , Mutación/genética , Arabidopsis/anatomía & histología , Sesgo , Cromosomas de las Plantas/genética , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Genes de Plantas , Genética de Población , Anotación de Secuencia Molecular , Tasa de Mutación , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma
11.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782135

RESUMEN

Recent findings regarding nicotinamide adenine dinucleotide (NAD+)-capped RNAs (NAD-RNAs) indicate that prokaryotes and eukaryotes employ noncanonical RNA capping to regulate gene expression. Two methods for transcriptome-wide analysis of NAD-RNAs, NAD captureSeq and NAD tagSeq, are based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry to label NAD-RNAs. However, copper ions can fragment/degrade RNA, interfering with the analyses. Here we report development of NAD tagSeq II, which uses copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) for labeling NAD-RNAs, followed by identification of tagged RNA by single-molecule direct RNA sequencing. We used this method to compare NAD-RNA and total transcript profiles of Escherichia coli cells in the exponential and stationary phases. We identified hundreds of NAD-RNA species in E. coli and revealed genome-wide alterations of NAD-RNA profiles in the different growth phases. Although no or few NAD-RNAs were detected from some of the most highly expressed genes, the transcripts of some genes were found to be primarily NAD-RNAs. Our study suggests that NAD-RNAs play roles in linking nutrient cues with gene regulation in E. coli.


Asunto(s)
Química Clic/métodos , Reacción de Cicloadición/métodos , NAD/metabolismo , Procesamiento Postranscripcional del ARN , Transcriptoma , Ciclo Celular , Escherichia coli , NAD/química , ARN Mensajero/química , ARN Mensajero/metabolismo
12.
Front Genet ; 12: 830626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126477

RESUMEN

Stock enhancement is one of the potential management strategies for the fishery. To better understand the impaction of stock enhancement, we simulated an experiment for lined seahorse (Hippocampus erectus) and evaluated the genetic structure after stock enhancement. In this study, we found the numbers of alleles (N A ) and heterozygosity (H O ) of stock enhancement strains were lower than those of the wild collections, while the inbreeding coefficient (F IS ) and relatedness index were higher. Within the 3 generations of stock enhancement strain, the N A , H O and polymorphism information content (PIC) didn't change significantly. In addition, the F ST value indicated that the genetic differentiation between the stock enhancement strains and the first wild collection reached an intermediate level, which could lead to substructuring in wild populations. Overall, these findings revealed a potential genetic risk associated with the release of hatchery strains into wild populations.

13.
Polymers (Basel) ; 12(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207716

RESUMEN

Existing research tends to focus on the performance of cured rubber. This is due to a lack of suitable testing methods for the mechanical properties of uncured rubber, in particular, tensile properties. Without crosslinking by sulfur, the tensile strength of uncured rubber compounds is too low to be accurately tested by general tensile testing machines. Firstly, a new tensile stress testing method for uncured rubber was established by using dynamic thermomechanical analysis (DMA) tensile strain scanning. The strain amplitude was increased under a set frequency and constant temperature. The corresponding dynamic force needed to maintain the amplitude was then measured to obtain the dynamic force-amplitude curve observed at this temperature and frequency. Secondly, the Burgers model is usually difficult to calculate and analyze in differential form, so it was reduced to its arithmetic form under creep conditions and material relaxation. Tensile deformation at a constant strain rate was proposed, so the Burgers model could be modified to a more concise form without any strain terms, making mathematical processing and simulating much more convenient. Thirdly, the rate of the modified Burgers model under constant strain was in good agreement with the test data, demonstrating that the elastic stiffness was 1-2 orders of magnitude less than the tensile viscosity. In the end, it was concluded that large data dispersion caused by the universal tensile test can be overcome by choosing this model, and it may become an effective way to study the tensile modeling of uncured rubber compound.

14.
Nucleic Acids Res ; 48(14): 7700-7711, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32652016

RESUMEN

Arabidopsis thaliana transcriptomes have been extensively studied and characterized under different conditions. However, most of the current 'RNA-sequencing' technologies produce a relatively short read length and demand a reverse-transcription step, preventing effective characterization of transcriptome complexity. Here, we performed Direct RNA Sequencing (DRS) using the latest Oxford Nanopore Technology (ONT) with exceptional read length. We demonstrate that the complexity of the A. thaliana transcriptomes has been substantially under-estimated. The ONT direct RNA sequencing identified novel transcript isoforms at both the vegetative (14-day old seedlings, stage 1.04) and reproductive stages (stage 6.00-6.10) of development. Using in-house software called TrackCluster, we determined alternative transcription initiation (ATI), alternative polyadenylation (APA), alternative splicing (AS), and fusion transcripts. More than 38 500 novel transcript isoforms were identified, including six categories of fusion-transcripts that may result from differential RNA processing mechanisms. Aided by the Tombo algorithm, we found an enrichment of m5C modifications in the mobile mRNAs, consistent with a recent finding that m5C modification in mRNAs is crucial for their long-distance movement. In summary, ONT DRS offers an advantage in the identification and functional characterization of novel RNA isoforms and RNA base modifications, significantly improving annotation of the A. thaliana genome.


Asunto(s)
Arabidopsis/genética , Secuenciación de Nanoporos/métodos , ARN de Planta/química , ARN de Planta/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Citosina/metabolismo , Metilación , Isoformas de ARN/química , Isoformas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , RNA-Seq
16.
Curr Biol ; 29(15): 2465-2476.e5, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31327714

RESUMEN

In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas Asociadas a Microtúbulos/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas HSP70 de Choque Térmico/metabolismo , Metilación , Proteínas Asociadas a Microtúbulos/metabolismo
17.
Methods Mol Biol ; 2014: 433-438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31197814

RESUMEN

Phloem, a specialized plant tissue, serves as a superhighway for macromolecular exchanges between different organs or tissues in plants. These mobile macromolecules may function as signaling molecules to sense intrinsic developmental cues or environmental inputs. Among these mobile molecules, RNAs generally need non-cell-autonomous pathway proteins (NCAPPs) to bind to and help them move along the symplasmic passage (through plasmodesmata) into the phloem stream. Grafting experiments combined with next-generation sequencing discovered that around 11.4% of identified Arabidopsis mobile mRNAs have a tRNA-like structure (TLS) motif. Adding an artificial tRNA-like structure at the 5' end of cell-autonomous RNAs (e.g., GUS transcript) can trigger its mobility and movement across a grafting junction to distant organs. Based on the accumulated data and the role of the TLS motif in RNA mobility, we built a web server in our database PLaMoM (a database for plant mobile macromolecules) to enable plant biologists to predict and analyze the transcripts they are interested in. In this chapter, we describe how to use our built-in web server to investigate RNA mobility.


Asunto(s)
Biomarcadores , Bases de Datos Factuales , Sustancias Macromoleculares/metabolismo , Floema/metabolismo , Motor de Búsqueda , Secuencia de Bases , Transporte Biológico , Motivos de Nucleótidos , Floema/genética , Plasmodesmos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Transducción de Señal , Interfaz Usuario-Computador
18.
Proc Natl Acad Sci U S A ; 116(24): 12072-12077, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31142650

RESUMEN

The 5' end of a eukaryotic mRNA transcript generally has a 7-methylguanosine (m7G) cap that protects mRNA from degradation and mediates almost all other aspects of gene expression. Some RNAs in Escherichia coli, yeast, and mammals were recently found to contain an NAD+ cap. Here, we report the development of the method NAD tagSeq for transcriptome-wide identification and quantification of NAD+-capped RNAs (NAD-RNAs). The method uses an enzymatic reaction and then a click chemistry reaction to label NAD-RNAs with a synthetic RNA tag. The tagged RNA molecules can be enriched and directly sequenced using the Oxford Nanopore sequencing technology. NAD tagSeq can allow more accurate identification and quantification of NAD-RNAs, as well as reveal the sequences of whole NAD-RNA transcripts using single-molecule RNA sequencing. Using NAD tagSeq, we found that NAD-RNAs in Arabidopsis were produced by at least several thousand genes, most of which are protein-coding genes, with the majority of these transcripts coming from <200 genes. For some Arabidopsis genes, over 5% of their transcripts were NAD capped. Gene ontology terms overrepresented in the 2,000 genes that produced the highest numbers of NAD-RNAs are related to photosynthesis, protein synthesis, and responses to cytokinin and stresses. The NAD-RNAs in Arabidopsis generally have the same overall sequence structures as the canonical m7G-capped mRNAs, although most of them appear to have a shorter 5' untranslated region (5' UTR). The identification and quantification of NAD-RNAs and revelation of their sequence features can provide essential steps toward understanding the functions of NAD-RNAs.


Asunto(s)
Arabidopsis/genética , NAD/genética , Caperuzas de ARN/genética , ARN Mensajero/genética , Regiones no Traducidas 5'/genética , Expresión Génica/genética , Análisis de Secuencia de ARN
19.
Ecol Evol ; 9(7): 3868-3878, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015972

RESUMEN

Organisms cope with environmental stressors by behavioral, morphological, and physiological adjustments. Documentation of such adjustments in the wild provides information on the response space in nature and the extent to which behavioral and bodily adjustments lead to appropriate performance effects. Here we studied the morphological and digestive adjustments in a staging population of migrating Great Knots Calidris tenuirostris in response to stark declines in food abundance and quality at the Yalu Jiang estuarine wetland (northern Yellow Sea, China). At Yalu Jiang, from 2011 to 2017 the densities of intertidal mollusks, the food of Great Knots, declined 15-fold. The staple prey of Great Knots shifted from the relatively soft-shelled bivalve Potamocorbula laevis in 2011-2012 to harder-shelled mollusks such as the gastropod Umbonium thomasi in 2016-2017. The crushing of the mollusks in the gizzard would require a threefold to 11-fold increase in break force. This was partially resolved by a 15% increase in gizzard mass which would yield a 32% increase in shell processing capacity. The consumption of harder-shelled mollusks was also accompanied by reliance on regurgitates to excrete unbreakable parts of prey, rather than the usual intestinal voidance of shell fragments as feces. Despite the changes in digestive morphology and strategy, there was still an 85% reduction in intake rate in 2016-2017 compared with 2011-2012. With these morphological and digestive adjustments, the Great Knots remaining faithful to the staging site to a certain extent buffered the disadvantageous effects of dramatic food declines. However, compensation was not complete. Locally, birds will have had to extend foraging time and use a greater daily foraging range. This study offers a perspective on how individual animals may mitigate the effects of environmental change by morphological and digestive strategies and the limits to the response space of long-distance migrating shorebirds in the wild.

20.
Environ Pollut ; 246: 697-703, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30616060

RESUMEN

In recent years, concerns about using Bisphenol A (BPA) in daily consume products and its effects in many chronic human diseases have prompted the removal of BPA. However, the widely used BPA alternatives, including Bisphenol S (BPS), have a high structural similarity with BPA, suggesting that they may have similar biological effects towards human beings. Indeed, BPS was also found to have endocrine-disrupting effects. Epigenetic mechanism was reported to be involved in BPA-induced biological effects in both in vitro and in vivo models. However, there is no assessment on whether BPS could cause epigenetic changes. In this work, we investigated the possible epigenetic effects of BPS that might induce in human breast cancer cell line MCF-7. We found that BPS could change DNA methylation level of transposons. Besides, methylation status in promoter of breast cancer related genes CDH1, SFN, TNFRSF10C were also changed, which implied that BPS might play a role in the development of breast cancer. Gene expression profiling showed that some genes related to breast cancer progression were upregulated, including THBS4, PPARGC1A, CREB5, COL5A3. Gene ontology (GO) analysis of the differentially expressed genes revealed the significantly changes in PI3K-Akt signaling pathway and extracellular matrix, which were related to the proliferation, migration and invasion of breast cancer cells. These results illustrated that BPS exposure might play roles in the progression of breast cancer.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Epigénesis Genética/efectos de los fármacos , Fenoles/toxicidad , Sulfonas/toxicidad , Transcriptoma/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...