Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(41): 14852-14858, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791974

RESUMEN

In this study, a new cobalt-based metal-organic framework (JLNU-500), [Co2(OH)(PBA)(AIP)]·3DMA·0.75H2O (4-(pyridin-4-yl) benzoic acid (HPBA), 5-aminoisophthalic acid (H2AIP) and N,N-dimethylacetamide (DMA)), was fabricated using a solvothermal method. JLNU-500 has 3D network architecture with 1D nanopore channels. The prepared JLNU-500 can activate peroxymonosulfate (PMS) for Rhodamine B (RhB) dye decolorization. Interestingly, catalyst JLNU-500 exhibited high efficiency for PMS activation, and nearly 100% (above 99.8%) removal of RhB with a high concentration (50.0 mg L-1, 100 mL) was achieved within 6 min. The reaction rate constant of the JLNU-500/PMS system was 1.02 min-1 calculated based on the pseudo-first-order kinetics, which is higher than that of the other reported catalysts. Furthermore, the factors, which could influence PMS activation were also investigated, such as PMS dosage, catalyst dosage, pollutant RhB concentration, reaction temperature and solution pH. More importantly, the radical trapping experiments ferreted out that sulfate (SO4˙-) and hydroxyl (˙OH) radicals were the dominating oxidants in the removal of RhB. Moreover, the possible degradation mechanism was elucidated. This study provides new prospects for fabricating new MOFs that can potentially be employed for high-efficiency catalytic oxidation as heterogeneous catalysts.

2.
Macromolecules ; 56(19): 7721-7728, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841531

RESUMEN

The study of aggregate formation and its controllable effect on luminescence behavior has a far-reaching influence in establishing a universal aggregation photophysical mechanism. In this paper, we obtained clusters with different extents of aggregation by heat-induced or light-triggered aggregation of a new polyurethane derivative (PUE). The controllable regulation of multicolor fluorescence of a single (nondoped) polymeric material is realized. The luminescence behavior of PUE varies with microscopic control of the aggregation structure. Compared with the powder state, the enhanced atom-atom and group-group interactions of PUE-gel effectively limit the nonradiative transitions in the excited state and result in a red-shift in emission. This work avoids complex organic synthesis and demonstrates a simple strategy to induce aggregation and regulate the emitting color of macromolecules, providing a template for developing new materials for multicolor fluorescence. In addition, a pattern was constructed with encryption, anticounterfeiting, and information transmission functions which provide a proof-of-concept demonstration of the practical potential of PUE as a smart material.

3.
RSC Adv ; 8(63): 36400-36406, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-35558477

RESUMEN

In this work, a multifunctional microporous metal-organic framework (MOF), [Cd(ABTC)(H2O)2(DMA)]·4DMA (JLNU-4; JLNU = Jilin Normal University; H4ABTC = 3,3',5,5'-azobenzenetetracarboxylic acid), has been synthesized based on the ligand H4ABTC under solvothermal conditions. JLNU-4 shows excellent uptake of iodine both in solution and in the vapor phase, owing to the existence of a microporous structure in JLNU-4. The adsorption kinetics during the process of iodine adsorption were analyzed via a series of qualitative and quantitative analyses, such as the Langmuir and Freündlich adsorption isotherms. In addition, according to UV/vis spectroscopy analysis and the colour variance of JLNU-4, the relatively small sized dye methylene blue (MB) could be efficiently adsorbed by JLNU-4, through size-exclusion effects. Particularly, JLNU-4 can serve as a column-chromatographic filler for the separation of dye molecules. Therefore, JLNU-4 is a multifunctional microporous MOF for iodine adsorption and column-chromatographic dye separation.

4.
Chem Commun (Camb) ; 53(37): 5204-5207, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28443895

RESUMEN

Two novel isostructural polyoxometalate (POM)-based metal-organic frameworks (MOFs) with diamond topology, NENU-506 and NENU-507, were hydrothermally synthesized. They not only combine the advantages of both POMs and MOFs, but also show excellent chemical and thermal stability. Notably, NENU-507 exhibited a high reversible capacity of 640 mA h g-1 after 100 cycles when applied as an anode material in lithium-ion batteries.

5.
Chemistry ; 22(27): 9299-304, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27243145

RESUMEN

Two novel polyoxometalate (POM)-based coordination polymers, namely, [Co(bpz)(Hbpz)][Co(SO4 )0.5 (H2 O)2 (bpz)]4 [PMo(VI) 8 Mo(V) 4 V(IV) 4 O42 ]⋅13 H2 O (NENU-530) and [Ni2 (bpz)(Hbpz)3 (H2 O)2 ][PMo(VI) 8 Mo(V) 4 V(IV) 4 O44 ]⋅8 H2 O (NENU-531) (H2 bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole), were isolated by hydrothermal methods, which represented 3D networks constructed by POM units, the protonated ligand and sulfate group. In contrast with most POM-based coordination polymers, these two compounds exhibit exceptional excellent chemical and thermal stability. More importantly, NENU-530 shows a high proton conductivity of 1.5×10(-3)  S cm(-1) at 75 °C and 98 % RH, which is one order of magnitude higher than that of NENU-531. Furthermore, structural analysis and functional measurement successfully demonstrated that the introduction of sulfate group is favorable for proton conductivity. Herein, the syntheses, crystal structures, proton conductivity, and the relationship between structure and property are presented.

6.
Chemistry ; 21(27): 9784-9, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26015079

RESUMEN

A series of isoreticular metal-organic frameworks (MOFs; NENU-511-NENU-514), which all have high surface areas and strong adsorption capacities, have been successfully constructed by using mixed ligands. NENU-513 has the highest benzene capacity of 1687 mg g(-1) at 298 K, which ranks as the top MOF material among those reported up to now. This NENU series has been used for adsorptive desulfurization because of its permanent porosity. The results indicate that this series has a higher adsorptive efficiency in the removal of organosulfur compounds than other MOF materials, especially NENU-511, which has the highest adsorptive efficiency in the ambient atmosphere. This study proves that the design and synthesis of targeted MOFs with higher surface areas and with functional groups present is an efficient method to enhance benzene-storage capacity and the adsorption of organosulfur compounds.

7.
Inorg Chem ; 54(7): 3290-6, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25768042

RESUMEN

A stable porous carbazole-based luminescent metal-organic framework, NENU-522, was successfully constructed. It is extremely stable in air and acidic/basic aqueous solutions, which provides the strategy for luminescent material encapsulation of Ln(3+) ions with tunable luminescence for application in light emission. More importantly, Ln(3+)@NENU-522 can emit white light by encapsulating different molar ratios of Eu(3+) and Tb(3+) ions. Additionally, Tb(3+)@NENU-522 is found to be useful as a fluorescent indicator for the qualitative and quantitative detection of nitroaromatic explosives with different numbers of -NO2 groups, and the concentrations of complete quenching are about 2000, 1000, and 80 ppm for nitrobenzene, 1,3-dinitrobenzene, and 2,4,6-trinitrophenol, respectively. Meanwhile, Tb(3+)@NENU-522 displays high selectivity and recyclability in the detection of nitroaromatic explosives.


Asunto(s)
Sustancias Explosivas/análisis , Elementos de la Serie de los Lantanoides/química , Luz , Nitrocompuestos/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Sustancias Explosivas/química , Luminiscencia
8.
Inorg Chem ; 53(15): 8105-13, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25052891

RESUMEN

In this work, five novel 2D isostructural Cd(II)-lanthanide(III) heterometallic-organic frameworks [CdCl(L)Eu(x)Tb(y)(H2O)(DMA)](NO3)·3DMA (IFMC-36-Eu(x)Tb(y): x = 1, y = 0, IFMC-36-Eu; x = 0.6, y = 0.4, IFMC-36-Eu(0.6)Tb(0.4); x = 0.5, y = 0.5, IFMC-36-Eu(0.5)Tb(0.5); x = 0.4, y = 0.6, IFMC-36-Eu(0.4)Tb(0.6); x = 0, y = 1, IFMC-36-Tb; H3L is 4,4',4″-((2,2',2″-(nitrilotris(methylene))tris(1H-benzo[d]imidazole-2,1-diyl))tris(methylene))tribenzoic acid; IFMC = Institute of Functional Material Chemistry) have been successfully synthesized by taking advantage of different molar ratios of lanthanide(III) (Ln(III)) and metalloligands under solvothermal conditions. Further luminescent measurements indicate that IFMC-36-Eu(x)Tb(y) exhibits characteristic sharp emission bands of Eu(III) and Tb(III), and the intensities of red and green can be modulated correspondingly by tuning the ratios of Eu(III) and Tb(III). Particularly, the solvent-dependent luminescent behavior of IFMC-36-Eu shows a potential application in detection of small-molecule pollutant nitrobenzene by significant fluorescence quenching. Furthermore, IFMC-36-Eu displays preeminent anti-interference ability and could be used for sensing in the systems with complicated components. This is the first time that a d-f heterometallic-organic framework can be investigated as a chemical sensor for selective, sensitive, and recyclable detection of nitrobenzene.


Asunto(s)
Cadmio/química , Elementos de la Serie de los Lantanoides/química , Nitrobencenos/análisis , Compuestos Organometálicos/química , Ligandos , Mediciones Luminiscentes , Nitrobencenos/química , Compuestos Organometálicos/síntesis química
9.
Chemistry ; 20(19): 5625-30, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24677301

RESUMEN

Herein, a novel anionic framework with primitive centered cubic (pcu) topology, [(CH3 )2 NH2 ]4 [(Zn4 dttz6 )Zn3 ]⋅15 DMF⋅4.5 H2 O, (IFMC-2; H3 dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole) was solvothermally isolated. A new example of a tetranuclear zinc cluster {Zn4 dttz6 } served as a secondary building unit in IFMC-2. Furthermore, the metal cluster was connected by Zn(II) ions to give rise to a 3D open microporous structure. The lanthanide(III)-loaded metal-organic framework (MOF) materials Ln(3+) @IFMC-2, were successfully prepared by using ion-exchange experiments owing to the anionic framework of IFMC-2. Moreover, the emission spectra of the as-prepared Ln(3+) @IFMC-2 were investigated, and the results suggested that IFMC-2 could be utilized as a potential luminescent probe toward different Ln(3+) ions. Additionally, the absorption ability of IFMC-2 toward ionic dyes was also performed. Cationic dyes can be absorbed, but not neutral and anionic dyes, thus indicating that IFMC-2 exhibits selective absorption toward cationic dyes. Furthermore, the cationic dyes can be gradually released in the presence of NaCl.

10.
Chemistry ; 20(13): 3589-94, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24577888

RESUMEN

A 2D, extremely stable, metal-organic framework (MOF), NENU-503, was successfully constructed. It displays highly selective and recyclable properties in detection of nitroaromatic explosives as a fluorescent sensor. This is the first MOF that can distinguish between nitroaromatic molecules with different numbers of NO2 groups.


Asunto(s)
Sustancias Explosivas/análisis , Nitrocompuestos/análisis , Fluorescencia , Estructura Molecular , Nitrocompuestos/química
11.
Chemistry ; 19(34): 11279-86, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23852886

RESUMEN

A new family of heterometal-organic frameworks has been prepared by two synthesis strategies, in which IFMC-26 and IFMC-27 are constructed by self-assembly and IFMC-28 is obtained by stepwise synthesis based on the metalloligand (IFMC=Institute of Functional Material Chemistry). IFMC-26 is a (3,6)-connected net and IFMC-27 is a (4,8)-connected 3D framework. The metalloligands {Ni(H4 L)}(NO3 )2 are connected by binuclear lanthanide clusters giving rise to a 2D sheet structure in IFMC-28. Notably, IFMC-26-Eux Tby and IFMC-28-Eux Tby have been obtained by changing the molar ratios of raw materials. Owing to the porosity of IFMC-26, Tb(3+) @IFMC-26-Eu and Eu(3+) @IFMC-26-Tb are obtained by postencapsulating Tb(III) and Eu(III) ions into the pores, respectively. Tunable luminescence in metal-organic frameworks is achieved by the two kinds of doping methods. In particular, the quantum yields of heterometal-organic frameworks are apparently enhanced by postencapsulation of Ln(III) ions.


Asunto(s)
Compuestos Organometálicos/química , Cristalografía por Rayos X , Europio/química , Iones/química , Elementos de la Serie de los Lantanoides/química , Conformación Molecular , Porosidad , Teoría Cuántica , Espectrometría de Fluorescencia , Terbio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...