Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Environ Pollut ; : 124984, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303934

RESUMEN

The self-cementation characteristics of arsenic (As)-contaminated soil were comprehensively investigated in this study. Different non-thermal plasma-irradiated binary (hydro)oxides of polyvalent ferromanganese (poly-Fe-Mn) were synthesized and exploratorily dispersed to soil samples to activate solidification and stabilization during the self-cemented process. The maximum compressive strength of 56.35 MPa and the lowest leaching toxicity of 0.004 mg/L were obtained in the proof test under optimal conditions (i.e., the mass ratio of the poly-Fe-Mn to the soil sample of 0.05; the mass ratio of the composite alkali activator (NaOH + CaO) to the soil sample of 0.25; the mass ratio of CaO to NaOH of 1.5; the mass ratio of the DI water to the binder of 0.515). The composite alkaline activator primarily contributed to the strength formation of the self-cemented matrix while the poly-Fe-Mn significantly influenced the reduction of the As-leaching toxicities. The poly-Fe-Mn maintained diffusion-controlled polycondensation and strengthened the nucleation process during self-cementation. The amount of water and the dosage of poly-Fe-Mn caused an interactive influence on the self-cemented solidification of contaminated soils. The solidified samples with poly-Fe-Mn exhibited better thermal decomposition than their counterparts, reflecting the enhancement of poly-Fe-Mn to the matrix. Some minerals including C-S-H, kaolinite, gehlenite, diopside sodian, augite, and albite were matched in the samples, directly demonstrating the geopolymerization-steered self-cementation of the As soil. The employment of poly-Fe-Mn not only reinforced the immobilization of As pollutants in the matrix but also induced the self-cementation of soils by intensifying the composite alkaline-activated geopolymerization kinetics.

2.
Arch Biochem Biophys ; 761: 110153, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271097

RESUMEN

Myocardial infarction (MI) is the primary source of death in cardiovascular diseases. Myricitrin (MYR) is a phenolic compound known for its antioxidant properties. This study aimed to investigate the impact of MYR alone or combined with exercise on a rat model of MI and its underlying mechanism. Sprague-Dawley rats were randomized into 5 groups: sham-operated (Sham), MI-sedentary (MI-Sed), MI-exercise (MI-Ex), MI-sedentary + MYR (MI-Sed-MYR) and MI-exercise + MYR (MI-Ex-MYR). MI was induced through ligation of left anterior descending coronary artery. The treatment with exercise or MYR (30 mg/kg/d) gavage began one week after surgery, either individually or in combination. After 8 weeks, the rats were assessed for cardiac function. Myocardial injuries were estimated using triphenyltetrazolium chloride, sirius red and Masson staining. Changes in reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), apoptosis and Nrf2/HO-1 pathway were analyzed by ROS kit, JC-1 kit, TUNEL assay, Western blot and immunohistochemistry. Both MYR and exercise treatments improved cardiac function, reduced infarct size, suppressed collagen deposition, and decreased myocardial fibrosis. Additionally, both MYR and exercise treatments lowered ROS production induced by MI, restored ΔΨm, and attenuated oxidative stress and apoptosis in cardiomyocytes. Importantly, the combination of MYR and exercise showed greater efficacy compared to individual treatments. Mechanistically, the combined intervention activated the Nrf2/HO-1 signaling pathway. These findings suggest that the synergistic effect of MYR and exercise may offer a promising therapeutic approach for alleviating MI.

3.
Sci Rep ; 14(1): 17979, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095521

RESUMEN

With regard to deep mining in metal mines, an investigation into the failure mode of deep fractured rock masses and their corresponding acoustic emission signal characteristics is conducted via uniaxial compression tests. Subsequently, a fractal damage renormalization group mechanical model is developed to explain the behavior of those fractured rock masses. Employing the bonded block model (BBM) numerical simulation method, fracture process in synthetic rock samples is analyzed, thereby validating the efficacy of the mechanical model. The numerical simulations highlight the critical role of fractures expansion in underlying the deterioration of rock mass strength. As the peak load decreases, the fracture fractal dimension increases, leading to a significant 14.2% reduction in compressive strength accompanied by an approximate 8.7% rise in average fracture fractal dimension. A comparative analysis of tetrahedral and voronoi block synthetic rock samples reveals the tetrahedral block samples exhibit a superior ability to depict the fracture behavior of fractured rock masses. Specifically, they offer a more accurate simulation of acoustic emission characteristics and failure modes. Furthermore, variations in the fracture fractal dimension with respect to the hole defect's position are observed, with the maximum value occurring along the vertical axis of the hole defect. This observation underscores the potential utility of visually monitoring deep rock fracture dynamics as an effective mean for quantitatively evaluating fracture damage and strength degradation in deep rock formations.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39171982

RESUMEN

In space optical applications, the piezoelectric-actuated fast steering mirror (FSM) is one of the pivotal components for high-precision beam capturing and trajectory tracking. The FSM is restrained in small-angle scanning applications due to the short actuation stroke of the incorporated piezoelectric materials. This study introduces a dual-axis sub-radian stroke FSM with a high ratio of output range to resolution and self-sensing capability, based on cascading structures for displacement amplification and flexible parts for feedback. Theoretical analyses and finite element analysis (FEA) are applied to elucidate the driving and deformation mechanisms of the proposed FSM structure. To ensure the performance of the proposed FSM, the double-loop control strategies are implemented independently for rotation around the two orthogonal axes. Experimental results reveal that both axes can rotate 148.67 mrad under the closed-loop control, with the ratio of output range to resolution larger than 3.90 × 104, superior to existing FSMs. We further demonstrate with designed experiments of tracking complex trajectories that the relative tracking accuracy error remains lower than 0.02%.

5.
J Phys Chem A ; 128(32): 6695-6702, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39109749

RESUMEN

The C2H2 + OH reaction is a key elementary reaction in acetylene oxidation, and the products forming in different reaction channels, such as C2H and CH3 radicals, are also important for subsequent reaction processes in the combustion process. In this work, we investigated the dynamics of the C2H2 + OH reaction with specific vibrational mode excitations and analyzed the mode specificity based on quasi-classical trajectory calculations on a recently developed full-dimensional potential energy surface. It is found that exciting OH stretching mode can promote the production of H + OCCH2 and CO + CH3, while the excitation of C-H symmetric/antisymmetric stretching mode of C2H2 can facilitate the H2O + C2H channel. Based on the prediction of vibrationally adiabatic and sudden vector projection models, the mode specificity in the C2H2 + OH reaction can be attributed to the difference in the degree of coupling between the initial motion mode and the reaction coordinate of each reaction path, which ultimately leads to the changes in rate constants and the product branching ratios. These findings can offer theoretical insights to regulate the branching ratio of the multichannel C2H2 + OH reaction.

6.
Front Cell Neurosci ; 18: 1368018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100897

RESUMEN

The maturation of brain microvascular endothelial cells leads to the formation of a tightly sealed monolayer, known as the blood-brain barrier (BBB). The BBB damage is associated with the pathogenesis of age-related neurodegenerative diseases including vascular cognitive impairment and Alzheimer's disease. Growing knowledge in the field of epigenetics can enhance the understanding of molecular profile of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. Histone deacetylases (HDACs) inhibitors are epigenetic regulators that can induce acetylation of histones and induce open chromatin conformation, promoting gene expression by enhancing the binding of DNA with transcription factors. We investigated how HDAC inhibition influences the barrier integrity using immortalized human endothelial cells (HCMEC/D3) and the human induced pluripotent stem cell (iPSC)-derived brain vascular endothelial cells. The endothelial cells were treated with or without a novel compound named W2A-16. W2A-16 not only activates Wnt/ß-catenin signaling but also functions as a class I HDAC inhibitor. We demonstrated that the administration with W2A-16 sustained barrier properties of the monolayer of endothelial cells, as evidenced by increased trans-endothelial electrical resistance (TEER). The BBB-related genes and protein expression were also increased compared with non-treated controls. Analysis of transcript profiles through RNA-sequencing in hCMEC/D3 cells indicated that W2A-16 potentially enhances BBB integrity by influencing genes associated with the regulation of the extracellular microenvironment. These findings collectively propose that the HDAC inhibition by W2A-16 plays a facilitating role in the formation of the BBB. Pharmacological approaches to inhibit HDAC may be a potential therapeutic strategy to boost and/or restore BBB integrity.

7.
Nutrients ; 16(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203920

RESUMEN

Rosa sterilis (RS) is a characteristic fruit in southwestern China that has numerous health benefits; however, its pharmacological effect needs further clarification, especially with respect to the exploration of its potential anti-breast-cancer effect, as there are still knowledge gaps in this regard. This study was designed to investigate the protective effects of Rosa sterilis juice (RSJ) on breast cancer (BC) through in vitro cellular experiments and by establishing mouse 4T1 breast xenograft tumors. This study also had the aim of elucidating RSJ's underlying mechanisms. RSJ can inhibit cell proliferation, affect cell morphology, and impact the clone formation ability of BC; furthermore, it can promote apoptosis by triggering the mitochondrial apoptosis pathway. In mouse 4T1 breast xenograft tumors, RSJ markedly inhibited tumor growth, relieved the pathological lesions, lowered the expression of Ki67, and regulated the expression of the apoptosis-associated protein. Moreover, we observed that RSJ can inhibit the Jak2/Stat3 signaling pathway both in vivo and in vitro. Overall, our research reveals that RSJ can alleviate BC by triggering the mitochondrial apoptosis pathway and suppressing the Jak2/Stat3 pathway, providing new dietary intervention strategies for BC.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Janus Quinasa 2 , Mitocondrias , Rosa , Factor de Transcripción STAT3 , Transducción de Señal , Janus Quinasa 2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Femenino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Mama/patología , Transducción de Señal/efectos de los fármacos , Ratones , Humanos , Línea Celular Tumoral , Rosa/química , Proliferación Celular/efectos de los fármacos , Jugos de Frutas y Vegetales , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201345

RESUMEN

The ripening process of Chinese bayberries (Myrica rubra) is intricate, involving a multitude of molecular interactions. Here, we integrated transcriptomic and metabolomic analysis across three developmental stages of the Myrica rubra (M. rubra) to elucidate these processes. A differential gene expression analysis categorized the genes into four distinct groups based on their expression patterns. Gene ontology and pathway analyses highlighted processes such as cellular and metabolic processes, including protein and sucrose metabolism. A metabolomic analysis revealed significant variations in metabolite profiles, underscoring the dynamic interplay between genes and metabolites during ripening. Flavonoid biosynthesis and starch and sucrose metabolism were identified as key pathways, with specific genes and metabolites playing crucial roles. Our findings provide insights into the molecular mechanisms governing fruit ripening in M. rubra and offer potential targets for breeding strategies aimed at enhancing fruit quality.


Asunto(s)
Frutas , Metabolómica , Myrica , Flavonoides/metabolismo , Flavonoides/biosíntesis , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Metabolómica/métodos , Myrica/genética , Myrica/metabolismo , Myrica/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
9.
Food Chem ; 460(Pt 2): 140556, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089024

RESUMEN

Human milk phospholipids (HMPLs) play an indispensable role in the neurodevelopment and growth of infants. In this study, a total of 37 phospholipid fatty acid (PLFA) species and 139 phospholipid molecular species were detected from human milk and other natural phospholipid sources (including 5 animal-derived species and 2 plant species). Moreover, a similarity evaluation model for HMPLs was established, including phospholipid classes, PLFAs, and phospholipid molecular species, to evaluate their natural substitutes. The closest scores for HMPL substitute in these three dimensions was 0.89, 0.72, and 0.77, which belonged to mare milk, goat milk, and camel milk, respectively. The highest comprehensive similarity score was obtained by camel milk at 0.75, while the lowest score was observed in soybean phospholipid (0.22). Therefore, these results not only monitored the stereochemical structure of HMPLs and their substitutes, but also further provided new insights for the development of infant formulae.


Asunto(s)
Cabras , Leche Humana , Fosfolípidos , Humanos , Fosfolípidos/química , Fosfolípidos/análisis , Leche Humana/química , Animales , Ácidos Grasos/química , Ácidos Grasos/análisis , Camelus/crecimiento & desarrollo , Caballos , Fórmulas Infantiles/química , Fórmulas Infantiles/análisis , Leche/química , Femenino , Estructura Molecular
10.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005475

RESUMEN

Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.

11.
J Med Chem ; 67(15): 12660-12675, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39045829

RESUMEN

Aberrant FGF2/FGFR signaling is implicated in lung squamous cell carcinoma (LSCC), posing treatment challenges due to the lack of targeted therapeutic options. Designing drugs that block FGF2 signaling presents a promising strategy different from traditional kinase inhibitors. We previously reported a ColVα1-derived fragment, HEPV (127AA), that inhibits FGF2-induced angiogenesis. However, its large size may limit therapeutic application. This study combines rational peptide design, molecular dynamics simulations, knowledge-based prediction, and GUV and FRET assays to identify smaller peptides with FGF2-blocking properties. We synthesized two novel peptides, HBS-P1 (45AA) and HBS-P2 (66AA), that retained the heparin-binding site. Both peptides demonstrated anti-LSCC and antiangiogenesis properties in cell viability and microvessel network induction assays. In two LSCC subcutaneous models, HBS-P1, with its affinity for FGF2 and enhanced penetration ability, demonstrated substantial therapeutic potential without apparent toxicities. Our study provides the first evidence supporting the development of collagen V-derived natural peptides as FGF2-blocking agents for LSCC treatment.


Asunto(s)
Carcinoma de Células Escamosas , Diseño de Fármacos , Factor 2 de Crecimiento de Fibroblastos , Neoplasias Pulmonares , Péptidos , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Animales , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Simulación de Dinámica Molecular , Ratones Desnudos
12.
Prev Vet Med ; 230: 106290, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079192

RESUMEN

Bluetongue disease is an infectious disease transmitted by Culicoides as vectors, mainly infecting ruminants. Because ruminants play an important role in animal husbandry in China, the outbreak of bluetongue disease can cause serious economic losses. Maxent model was applied to predict the distribution of bluetongue in China based on the data derived from domestic and foreign academic literature databases including CNKI, Wanfang Database, PubMed, Web of Science and Google Scholar. The results showed that annual mean temperature (BIO1), precipitation in driest month (BIO14), sheep density (SD) and altitude (Elev) were the relevant variables of bioclimatic suitable zones for bluetongue disease. Precipitation in wettest month (BIO13), BIO1, BIO14, Elev were the main variables affecting the habitat of the bluetongue vector Culicoides. The most suitable climate for bluetongue infection occurs in southern China, central China and parts of Xinjiang. The suitable living areas of Culicoides are mainly located in southern, central and eastern China, and the overlap of the two suitable areas is high. The study suggested that southern, central, and eastern China are high-risk areas for bluetongue due to the significant overlap of suitable habitats for both the disease and its vector. Implementing effective surveillance and targeted control strategies in these regions is crucial for mitigating the impact of bluetongue disease.


Asunto(s)
Lengua Azul , Ceratopogonidae , Lengua Azul/transmisión , Lengua Azul/epidemiología , Animales , China/epidemiología , Ceratopogonidae/virología , Ovinos , Insectos Vectores/virología , Virus de la Lengua Azul/fisiología , Clima
13.
Int J Biol Macromol ; 272(Pt 1): 132707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825274

RESUMEN

Eucommia ulmoides is a temperate gum source plant that produces trans-polyisoprene (TPI), also known as Eucommia rubber. The structural configuration and function of TPI offer a new material with important potential for industrial development. In this study, we detected the TPI content in the leaves of diploid and triploid E. ulmoides plants. The average TPI content in the leaves of triploid E. ulmoides was significantly higher than that of diploid. Transcriptome data and weighted gene co-expression network analyses identified a significant positive correlation between the EuFPS1 gene and TPI content. Overexpression of EuFPS1 increased the density of rubber particles and TPI content, indicating its crucial role in TPI biosynthesis. In addition, the expression of EuHDZ25 in E. ulmoides was significantly positively correlated with EuFPS1 expression. Yeast one-hybrid and dual-luciferase assays demonstrated that EuHDZ25 mainly promotes TPI biosynthesis through positive regulation of EuFPS1 expression. The significantly up-regulated expression of EuHDZ25 and its consequent upregulation of EuFPS1 during the biosynthesis of TPI may partially explain the increased TPI content of triploids. This study provides an important theoretical foundation for further exploring the molecular mechanism of secondary metabolites content variation in polyploids and can help to promote the development and utilization of rubber resources.


Asunto(s)
Eucommiaceae , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Goma , Eucommiaceae/genética , Eucommiaceae/metabolismo , Eucommiaceae/química , Goma/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hemiterpenos/biosíntesis , Hemiterpenos/metabolismo
14.
Microorganisms ; 12(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38930463

RESUMEN

Lacticaseibacillus rhamnosus is applied as a probiotic to alleviate various metabolic, gastrointestinal, and psychological symptoms and diseases, and its probiotic effectiveness is strain-specific. In this study, we obtained 21 strains of Ls. rhamnosus, and their genomes were sequenced. We defined the pan- and core-genomes of Ls. rhamnosus. Phenotypes such as the assimilation of carbohydrates and antibiotic resistance were experimentally characterized and associated with genome annotations. Nine strains were selected and tested for growth rates, tolerance to acidity/alkalinity and bile acids, the production of short-chain fatty acids, and competition with pathogenic microbes. Strains WL11 and WL17 were targeted as potential probiotics and were applied in mouse model tests for the alleviation of chronic fatigue syndrome (CFS) and irritable bowel syndrome (IBS). The results showed that WL11 and WL17 effectively alleviated slow body weight gain, anxiety, poor memory, and cognitive impairment in CFS mouse models. They also reduced the expression of pro-inflammatory factors, such as TNF-α and IL-6, and alleviated intestinal peristalsis, visceral hypersensitivity, and anxiety-like behavior in IBS mouse models. This study reports new Ls. rhamnosus strain resources and their effect on alleviation of both IBS and CFS symptoms with mouse models; the probiotic functions of those strains in human patients remain to be further tested.

15.
Nutrients ; 16(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931162

RESUMEN

BACKGROUND: The metabolic-status-related mechanisms underlying the deterioration of the lung function in obese asthma have not been completely elucidated. OBJECTIVE: This study aimed to investigate the basal metabolic rate (BMR) in patients with obese asthma, its association with the lung function, and its mediating role in the impact of obesity on the lung function. METHODS: A 12-month prospective cohort study (n = 598) was conducted in a real-world setting, comparing clinical, body composition, BMR, and lung function data between patients with obese (n = 282) and non-obese (n = 316) asthma. Path model mediation analyses for the BMR and skeletal muscle mass (SMM) were conducted. We also explored the effects of the BMR on the long-term lung function in patients with asthma. RESULTS: Patients with obese asthma exhibited greater airway obstruction, with lower FEV1 (1.99 vs. 2.29 L), FVC (3.02 vs. 3.33 L), and FEV1/FVC (65.5 vs. 68.2%) values compared to patients with non-obese asthma. The patients with obese asthma also had higher BMRs (1284.27 vs. 1210.08 kcal/d) and SMM (23.53 vs. 22.10 kg). Both the BMR and SMM mediated the relationship between obesity and the lung function spirometers (FEV1, %FEV1, FVC, %FVC, and FEV1/FVC). A higher BMR or SMM was associated with better long-term lung function. CONCLUSIONS: Our study highlights the significance of the BMR and SMM in mediating the relationship between obesity and spirometry in patients with asthma, and in determining the long-term lung function. Interventions for obese asthma should focus not only on reducing adiposity but also on maintaining a high BMR.


Asunto(s)
Asma , Metabolismo Basal , Pulmón , Músculo Esquelético , Obesidad , Humanos , Asma/fisiopatología , Asma/complicaciones , Obesidad/complicaciones , Obesidad/fisiopatología , Estudios Prospectivos , Masculino , Femenino , Persona de Mediana Edad , Pulmón/fisiopatología , Adulto , Músculo Esquelético/fisiopatología , Músculo Esquelético/metabolismo , Pruebas de Función Respiratoria , Composición Corporal , Estudios de Cohortes
16.
Plant Physiol Biochem ; 212: 108766, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797011

RESUMEN

Glutathione S-transferases (GSTs) constitute a protein superfamily encoded by a large gene family and play a crucial role in plant growth and development. However, their precise functions in wood plant responses to abiotic stress are not fully understood. In this study, we isolated a Phi class glutathione S-transferase-encoding gene, PtrGSTF8, from poplar (Populus alba × P. glandulosa), which is significantly up-regulated under salt stress. Moreover, compared with wild-type (WT) plants, transgenic tobacco plants exhibited significant salt stress tolerance. Under salt stress, PtrGSTF8-overexpressing tobacco plants showed a significant increase in plant height and root length, and less accumulation of reactive oxygen species. In addition, these transgenic tobacco plants exhibited higher superoxide dismutase, peroxidase, and catalase activities and reduced malondialdehyde content compared with WT plants. Quantitative real-time PCR experiments showed that the overexpression of PtrGSTF8 increased the expression of numerous genes related to salt stress. Furthermore, PtrMYB108, a MYB transcription factor involved in salt resistance in poplar, was found to directly activate the promoter of PtrGSTF8, as demonstrated by yeast one-hybrid assays and luciferase complementation assays. Taken together, these findings suggest that poplar PtrGSTF8 contributes to enhanced salt tolerance and confers multiple growth advantages when overexpressed in tobacco.


Asunto(s)
Glutatión Transferasa , Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Populus/genética , Populus/enzimología , Populus/metabolismo , Tolerancia a la Sal/genética , Nicotiana/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Salino/genética
17.
Microorganisms ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38792711

RESUMEN

The study aims to analyze the composition of the gut microbiota in Chinese individuals using metagenomic sequencing technology, with a particular focus on the abundance of Akkermansia muciniphila (Akk). To improve the efficiency of Akk isolation and identification accuracy, modifications were made to the enrichment culture medium and 16S rRNA universal primers. Additionally, potential growth-promoting factors that stimulate Akk growth were explored through in vitro screening. The research results revealed that the abundance of Akk in Chinese fecal samples ranged from 0.004% to 0.4%. During optimization, a type of animal protein peptide significantly enhanced the enrichment efficiency of Akk, resulting in the isolation of three Akk strains from 14 fecal samples. Furthermore, 17 different growth-promoting factors were compared, and four factors, including galactose, sialic acid, lactose, and chitosan, were identified as significantly promoting Akk growth. Through orthogonal experiments, the optimal ratio of these four growth-promoting factors was determined to be 1:1:2:1. After adding 1.25% of this growth-promoting factor combination to the standard culture medium, Akk was cultivated at 37° for 36 h, achieving an OD600nm value of 1.169, thus realizing efficient proliferation and optimized cultivation of Akk. This study provides important clues for a deeper understanding of the gut microbiota composition in Chinese individuals, while also offering effective methods for the isolation and cultivation of Akk, laying the groundwork for its functional and application research in the human body.

18.
Sci Total Environ ; 931: 172902, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697539

RESUMEN

Typhoons and rainstorms (>250 mm/day) are extreme weather events changing hydrological characteristics and thus nitrogen (N) cycle in coastal waters. However, responses of N cycle to rainstorms and typhoons and their underlying mechanisms need to be elucidated. In this study, we conducted an analysis of a comparative dataset encompassing concentrations of nitrate (NO3-), ammonium (NH4+), dissolved oxygen (DO), chlorophyll a (Chl a), hydrological parameters, dual isotopic composition of NO3- (δ15N-NO3- and δ18O-NO3-) in Zhanjiang Bay during three distinct periods: the normal wet season, rainstorm, and typhoon periods. After the rainstorm, the salinity front in Zhanjiang Bay was more weakened and steadier than that during the normal wet season, mainly because onshore wind and a large amount of freshwater was inputted into the ocean surface. This weakened and steady salinity front strengthened water stratification and provided a favorable condition for phytoplankton blooms. Correspondingly, evident NO3- deficits coincided with elevated δ15N-NO3- and δ18O-NO3- values indicated that sufficient NO3- sustained phytoplankton blooms, leading to NO3- assimilation during the rainstorm period. By contrast, due to the onshore wind induced by the typhoon, the salinity front in Zhanjiang Bay was more intensified and unsteady after the typhoon than the normal wet season. The salinity front after the typhoon was unsteady enough to enhance vertical mixing in the water column. Relatively high DO concentrations suggested that enhanced vertical mixing after the typhoon support freshly organic matter decomposition and nitrification via oxygen injection from the air into the water column. In addition, NO3- deficits coincided with elevated δ15N-NO3- values and δ18O-NO3- values demonstrated the coexistence of NO3- assimilation during the typhoon period. This study suggests that the changing processes involved in NO3- cycling after typhoons and rainstorms are associated with the stability and intensity of the salinity front altered by these weather events.


Asunto(s)
Bahías , Tormentas Ciclónicas , Monitoreo del Ambiente , Nitratos , Estaciones del Año , Nitratos/análisis , China , Contaminantes Químicos del Agua/análisis , Lluvia , Fitoplancton , Ciclo del Nitrógeno , Salinidad , Agua de Mar/química
19.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731587

RESUMEN

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Asunto(s)
Sustitutos de Grasa , Ácidos Grasos , Leche Humana , Aceites de Plantas , Programas Informáticos , Triglicéridos , Humanos , Animales , Aceites de Plantas/química , Ácidos Grasos/química , Leche Humana/química , Ratones , Triglicéridos/química , Sustitutos de Grasa/química , Aceite de Palma/química , Aceite de Soja/química , Aceite de Linaza/química , Aceite de Brassica napus/química , Aceite de Maíz/química , Caprilatos/química , Ácido Palmítico/química , Ácido Oléico/química
20.
BMC Pulm Med ; 24(1): 165, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575884

RESUMEN

BACKGROUND: Postoperative pneumonia is one of the common complications after video-assisted thoracoscopic surgery. There is no related study on the effect of lung isolation with different airway devices on postoperative pneumonia. Therefore, in this study, the propensity score matching method was used to retrospectively explore the effects of different lung isolation methods on postoperative pneumonia in patients undergoing video-assisted thoracoscopic surgery. METHODS: This is A single-center, retrospective, propensity score-matched study. The information of patients who underwent VATS in Weifang People 's Hospital from January 2020 to January 2021 was retrospectively included. The patients were divided into three groups according to the airway device used in thoracoscopic surgery: laryngeal mask combined with bronchial blocker group (LM + BB group), tracheal tube combined with bronchial blocker group (TT + BB group) and double-lumen endobronchial tube group (DLT group). The main outcome was the incidence of pneumonia within 7 days after surgery; the secondary outcome were hospitalization time and hospitalization expenses. Patients in the three groups were matched using propensity score matching (PSM) analysis. RESULTS: After propensity score matching analysis, there was no significant difference in the incidence of postoperative pneumonia and hospitalization time among the three groups (P > 0.05), but there was significant difference in hospitalization expenses among the three groups (P < 0.05). CONCLUSIONS: There was no significant difference in the effect of different intubation lung isolation methods on postoperative pneumonia in patients undergoing thoracoscopic surgery.


Asunto(s)
Neoplasias Pulmonares , Neumonía , Humanos , Cirugía Torácica Asistida por Video/efectos adversos , Cirugía Torácica Asistida por Video/métodos , Estudios Retrospectivos , Puntaje de Propensión , Pulmón , Neoplasias Pulmonares/cirugía , Intubación Intratraqueal/métodos , Neumonía/epidemiología , Neumonía/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA