Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 241: 117602, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951379

RESUMEN

Abyssal and hadal sediments represent two of the most type ecosystems on Earth and have the potential interactions with geochemistry. However, little is known about the prokaryotic community assembly and the response of prokaryotic communities to metal(loid)s in trench sediments due to the lack of adequate and appropriate samples. In this study, a systematic investigation combined the assembly mechanisms and co-occurrence patterns of prokaryotic communities between the hadal and abyssal sediments across the Yap Trench. The results revealed that the hadal prokaryotes had less species diversity, but more abundant function than the abyssal prokaryotes. The prokaryotic communities in the abyssal sediments had more core taxa than the hadal sediments. Twenty-one biomarkers mostly affiliated with Nitrosopumilaceae were detected using Random-Forests machine learning algorithm. Furthermore, stochasticity was dominant in the prokaryotic community assembly processes of the Yap Trench sediments. Meanwhile, homogeneous selection (32.6%-52.9%) belonging to deterministic processes governed the prokaryotic community assembly in hadal sediments with increasing of sediment depth. In addition to total nitrogen and total organic carbon, more metal(loid)s were significantly correlated with the prokaryotic community in the hadal sediments than that in the abyssal sediments. The hadal prokaryotic communities was most positively related to bismuth (r = 0.31, p < 0.01), followed by calcium, chromium, cerium, potassium, plumbum, scandium, titanium, and vanadium. Finally, co-occurrence networks revealed two potential dominant prokaryotic modules in Yap Trench sediments covaried across oceanographic zonation. By contrast, the hadal network had relatively more complexity, more bacterial taxa, and more associations among prokaryotic taxa, relative to the abyssal network. This study reveals potentially metal variables and community assembly mechanisms of the prokaryotic community in abyssal and hadal sediments and provides a better understanding on the prokaryotic diversity and ecology in trench sediment ecosystems.


Asunto(s)
Bacterias , Ecosistema , Archaea , Ecología , Cromo , Sedimentos Geológicos
2.
Microorganisms ; 11(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513020

RESUMEN

Flavonoids are crucial in physiological and pharmaceutical processes, especially the treatment of cancer and the prevention of cardiovascular and cerebrovascular diseases. Flavonoid-producing plants and fungi have been extensively reported, but bacteria have been much less investigated as a source of flavonoid production. Deinococcus sp. 43, a spherical flavonoid-producing bacteria from the Ginkgo rhizosphere, was reported in this study. First, the whole genome of Deinococcus sp. 43 was sequenced and a series of flavonoid anabolic genes were annotated. Simultaneously, High Performance Liquid Chromatography (HPLC) results showed that Deinococcus sp. 43 was capable of producing flavonoids, with a maximum quercetin output of 2.9 mg/L. Moreover, the relative expression of key genes involved in flavonoid synthesis was determined to test the completeness of the flavonoid anabolic pathway. The results of LC-MS analysis demonstrated that the flavonoids produced by Deinococcus sp. 43 were significantly different between intracellular and extracellular environments. The concentration of multiple glycosylated flavonoids was substantially higher in extracellular than intracellular environments, while the majority of flavonoids obtained in intracellular environments were hydroxylated multiple times. Lastly, the flavonoid biosynthetic pathway of Deinococcus sp. 43 was constructed based on the genomic analysis and the detected flavonoids. In conclusion, this study represents the first comprehensive characterization of the flavonoid-producing pathway of Deinococcus. The findings demonstrate that the strain has excellent potential as a genetically engineered strain for the industrial production of flavonoids.

3.
Front Microbiol ; 14: 1163488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138610

RESUMEN

Bacterial endophytes of Ginkgo roots take part in the secondary metabolic processes of the fossil tree and contribute to plant growth, nutrient uptake, and systemic resistance. However, the diversity of bacterial endophytes in Ginkgo roots is highly underestimated due to the lack of successful isolates and enrichment collections. The resulting culture collection contains 455 unique bacterial isolates representing 8 classes, 20 orders, 42 families, and 67 genera from five phyla: Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Deinococcus-Thermus, using simply modified media (a mixed medium without any additional carbon sources [MM)] and two other mixed media with separately added starch [GM] and supplemented glucose [MSM]). A series of plant growth-promoting endophytes had multiple representatives within the culture collection. Moreover, we investigated the impact of refilling carbon sources on enrichment outcomes. Approximately 77% of the natural community of root-associated endophytes were predicted to have successfully cultivated the possibility based on a comparison of the 16S rRNA gene sequences between the enrichment collections and the Ginkgo root endophyte community. The rare or recalcitrant taxa in the root endosphere were mainly associated with Actinobacteria, Alphaproteobacteria, Blastocatellia, and Ktedonobacteria. By contrast, more operational taxonomic units (OTUs) (0.6% in the root endosphere) became significantly enriched in MM than in GM and MSM. We further found that the bacterial taxa of the root endosphere had strong metabolisms with the representative of aerobic chemoheterotrophy, while the functions of the enrichment collections were represented by the sulfur metabolism. In addition, the co-occurrence network analysis suggested that the substrate supplement could significantly impact bacterial interactions within the enrichment collections. Our results support the fact that it is better to use the enrichment to assess the cultivable potential and the interspecies interaction as well as to increase the detection/isolation of certain bacterial taxa. Taken together, this study will deepen our knowledge of the indoor endophytic culture and provide important insights into the substrate-driven enrichment.

4.
Mar Life Sci Technol ; 5(1): 12-27, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37077290

RESUMEN

The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, Permianibacter aggregans HW001T, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001T was shown to be the representative strain of a novel family, classified as 'Permianibacteraceae'. The results of molecular dating suggested that the strain HW001T diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001T. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001T was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of P. aggregans to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001T to the changing ancient oceans. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00164-3.

5.
Planta ; 257(3): 61, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36808254

RESUMEN

MAIN CONCLUSION: P. polyphylla selectively enriches beneficial microorganisms to help their growth. Paris polyphylla (P. polyphylla) is an important perennial plant for Chinese traditional medicine. Uncovering the interaction between P. polyphylla and the related microorganisms would help to utilize and cultivate P. polyphylla. However, studies focusing on P. polyphylla and related microbes are scarce, especially on the assembly mechanisms and dynamics of the P. polyphylla microbiome. High-throughput sequencing of the 16S rRNA genes was implemented to investigate the diversity, community assembly process and molecular ecological network of the bacterial communities in three root compartments (bulk soil, rhizosphere, and root endosphere) across three years. Our results demonstrated that the composition and assembly process of the microbial community in different compartments varied greatly and were strongly affected by planting years. Bacterial diversity was reduced from bulk soils to rhizosphere soils to root endosphere and varied over time. Microorganisms benefit to plants was selectively enriched in P. polyphylla roots as was its core microbiome, including Pseudomonas, Rhizobium, Steroidobacter, Sphingobium and Agrobacterium. The network's complexity and the proportion of stochasticity in the community assembly process increased. Besides, nitrogen metabolism, carbon metabolism, phosphonate and phosphinate metabolism genes in bulk soils increased over time. These findings suggest that P. polyphylla exerts a selective effect to enrich the beneficial microorganisms and proves the sequential increasing selection pressure with P. polyphylla growth. Our work adds to the understanding of the dynamic processes of plant-associated microbial community assembly, guides the selection and application timing of P. polyphylla-associated microbial inoculants and is vital for sustainable agriculture.


Asunto(s)
Liliaceae , Microbiota , Microbiología del Suelo , ARN Ribosómico 16S , Raíces de Plantas/microbiología , Bacterias/genética , Rizosfera , Suelo , Liliaceae/genética
6.
Sci Total Environ ; 871: 162081, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754325

RESUMEN

Phosphorus recovery from water and the subsequent reuse of its products can solve both water eutrophication and phosphorus resource waste issues. However, the potential use of the final recovered products as crop phosphorus fertilizers and the transformation of phosphorus fractions in soils have rarely been analyzed. In this study, the effects of a phosphorus recovery product (w-HC/CSH/P) obtained from our previous phosphorus recovery study on pepper growth were investigated. The association between soil phosphorus fraction transformation and the microbial co-occurrence network was investigated using high-throughput sequencing. The results showed that amendment with w-HC/CSH/P could promote the growth and chlorophyll content of pepper, which exhibited high phosphorus fertilizer efficiency. In addition, applying w-HC/CSH/P in soils could increase the microbial alpha-diversity during pepper cultivation and induce changes in the microbial community, leading to an increase in the relative abundance of Povalibacter, Lysobacter, and GP10 and a decrease in GP17. The proportion of Resin-P and NaHCO3-Po decreased, whereas that of NaOH-Po increased during pepper cultivation. psOTU331 (g_Latescibacteria), psOTU377 (g_Lysobacter), and psOTU461 (g_Pseudoxanthomonas) were the key microorganisms driving the transformation of phosphorus fractionation in the microbial co-occurrence network. Latescibacteria and Lysobacter were closely correlated with the transformation of NaHCO3-Po to NaOH-Po, and Pseudoxanthomonas was significantly correlated with a decrease in Resin-P. These observations highlight the potential of phosphorus recovery products as fertilizer for pepper and provide new insights into the transformation of phosphorus fractions corresponding to the microbiome in soils.


Asunto(s)
Fósforo , Suelo , Fertilizantes , Hidróxido de Sodio , Bacterias , Microbiología del Suelo , Agua
7.
Front Microbiol ; 13: 972294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386636

RESUMEN

Here, we reported a Ginkgo endophyte, Aspergillus sp. Gbtc 2, isolated from the root tissue. Its flavonoid biosynthesis pathway was reconstructed, the effect of phenylalanine on the production of flavonoids was explored, and the flavonoid metabolites were identified with the high-resolution Liquid chromatography-mass spectrometry (LC-MS). Some essential genes were annotated to form the upstream of the complete biosynthesis pathway, indicating that Aspergillus sp. Gbtc 2 has the ability to synthesize the C6-C3-C6 flavonoid monomers. HPLC results showed that adding an appropriate amount of phenylalanine could promote the production of flavonoids by Aspergillus Gbtc 2. LC-MS results depicted a significant difference in many flavonoids between intracellularly and extracellularly. Most of the flavonoids gathered in the cell contained glycosylation groups, while almost all components with multiple hydroxyls showed much higher concentrations extracellularly than intracellularly; they likely have different biological functions. A variety of these substances can be mapped back to the pathway pattern of flavonoid biosynthesis and prove the ability of flavonoid production once again. This study expanded the information on flavonoid biosynthesis in Aspergillus and provided a solid theoretical basis for developing the fungi into genetically engineered strains undertaking flavonoid industrialized production.

8.
Front Plant Sci ; 13: 982771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035669

RESUMEN

Altitude affects plant growth and metabolism, but the effect of altitude on plant endophytic microorganisms is still unclear. In this study, we selected 16 Ginkgo biloba trees to study the response of leaves' endophytes to flavonoids and altitude (from 530 m to 1,310 m). HPLC results showed that flavonoids in Ginkgo biloba leaves increased by more than 150% with attitude rising from 530 m to 1,310 m, which revealed a positive correlation with altitude. Ginkgo biloba might regulate the increased flavonoids in leaves to resist the increasing light intensity. 16S rDNA sequencing results showed that the endophytic bacterial communities of Ginkgo biloba at different altitudes significantly differed. Ginkgo leaf endophytes' alpha diversity decreased with increasing flavonoids content and altitude. The increased flavonoids might increase the environmental pressure on endophytes and affect the endophytic community in Ginkgo biloba leaves. The bacterial network in Ginkgo biloba leaves became more complex with increasing altitude, which might be one of the strategies of leaf endophytes to cope with increasing flavonoids. Metagenomes results predicted with PICRUSt showed that the abundance of flavonoid biosynthesis and photosynthesis genes were significantly decreased with the increase of flavonoid contents. High flavonoid content in leaves appeared to inhibit microbial flavonoid synthesis. Our findings indicate that altitude can modulate microbial community structure through regulating plant metabolites, which is important to uncovering the interaction of microbes, host and the environment.

9.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408343

RESUMEN

In this paper, an improved double inputs direct contact and single output capacitively coupled conductivity detector (DISODCD) based on traditional contactless capacitively coupled conductivity detector (C4D) is developed. The sensor uses double inputs of the contact electrode and capacitively coupled output of the contactless electrode and a lock-in amplifier to reduce interfering noise signals and amplify gain. Parallel circuit counteracts the part of the adverse capacitance reactance introduced by electrode polarization and reduces the effect of the impedance caused by the coupled wall capacitance to measure the resistance of solution. The sensor reduces limit of detection (LOD) of analyte and improves the sensitivity of the device. The LOD of the potassium chloride solution is 1 nM, and the detection range is 0.01 µM to 10 mM in actual testing for a single sample. The ratio of the response of potassium chloride solution to background ultrapure water at low concentrations is better than that of double input capacitively coupled contactless conductivity detector (DIC4D) and direct contact conductivity detection (DCD) under the same condition. In the case that the test cell is contaminated with impurities, pollution of impurities has little effect on the response of DISODCD. In practical application, it has a good service life.


Asunto(s)
Cloruro de Potasio , Capacidad Eléctrica , Conductividad Eléctrica , Impedancia Eléctrica , Límite de Detección
10.
Ecotoxicol Environ Saf ; 229: 113067, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890983

RESUMEN

The response of soil bacterial communities from farmland ecosystems to cadmium (Cd) pollution, in which a steep concentration gradient of more than 100 mg/kg has naturally formed, has not previously been fully reported. In this study, a field investigation was conducted in a typical severe Cd-polluted farmland ecosystem, and the bacterial community response to the steep Cd gradient was analyzed. The results showed that Cd concentration sharply decreased from 159.2 mg/kg to 4.18 mg/kg among four sampling sites alongside an irrigation canal over a distance of 150 m. Bacterial diversity and richness were significantly lower in highly polluted sites, and random forest analysis indicated that Cd gradient played a decisive role in reducing alpha diversity. Redundancy analysis (RDA) and co-occurrence network indicated that the synergistic effects of pH, Cd, and phosphorus were the main drivers shaping community structure. The functional results predicted by BugBase suggested that the bacterial community may adapt to the harsh environment by recruiting Cd-resistant microbes and improving oxidative stress tolerance of the whole community. Cd-resistant microorganisms such as Burkholderia, Bradyrhizobium, and Sulfurifustis, which directly or indirectly participate in diminishing oxidative damage of Cd, may play essential roles in maintaining community stability and might be potential bacterial resources for the bioremediation of Cd pollution.


Asunto(s)
Burkholderia , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Cadmio/toxicidad , Ecosistema , Granjas , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
11.
Front Microbiol ; 12: 698703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671323

RESUMEN

Plant-specialized secondary metabolites have ecological functions in mediating interactions between plants and their entophytes. In this study, high-throughput gene sequencing was used to analyze the composition and abundance of bacteria from Ginkgo leaves at five different sampling times. The results indicated that the bacterial community structure varied during leaf developmental stage. Bacterial diversity was observed to be the highest at T2 stage and the lowest at T1 stage. Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes were found as the dominant phyla. The major genera also showed consistency across sampling times, but there was a significant variation in their abundance, such as Bacillus, Lysinibacillus, and Staphylococcus. Significant correlations were observed between endophytic bacteria and flavonoids. Especially, Staphylococcus showed a significant positive correlation with quercetin, and changes in the abundance of Staphylococcus also showed a strong correlation with flavonoid content. In order to determine the effect of flavonoids on endophytic bacteria of Ginkgo leaves, an extracorporeal culture of related strains (a strain of Staphylococcus and a strain of Deinococcus) was performed, and it was found that the effect of flavonoids on them remained consistent. The predicted result of Tax4Fun2 revealed that flavonoids might lead to a lower abundance of endophytic microorganisms, which further proved the correlation between bacterial communities and flavonoids. This study provided the first insight into the bacterial community composition during the development of Ginkgo leaves and the correlation between the endophytic bacteria and flavonoids.

12.
Front Plant Sci ; 12: 704985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305992

RESUMEN

Ginkgo biloba is a pharmaceutical resource for terpenes and flavonoids. However, few insights discussed endophytes' role in Ginkgo, and whether genetic exchange happens between Ginkgo and endophytes remains unclear. Herein, functional gene profiles and repetitive sequences were analyzed to focus on these issues. A total of 25 endophyte strains were isolated from the Ginkgo root and distributed in 16 genera of 6 phyla. Significant morphological diversities lead to the diversity in the COG functional classification. KEGG mapping revealed that endophytic bacteria and fungi potentially synthesize chalcone, while endophytic fungi might also promote flavonoid derivatization. Both bacteria and fungi may facilitate the lignin synthesis. Aspergillus sp. Gbtc_1 exhibited the feasibility of regulating alcohols to lignans. Although Ginkgo and the endophytes have not observed the critical levopimaradiene synthase in ginkgolides synthesis, the upstream pathways of terpenoid precursors are likely intact. The MVK genes in Ginkgo may have alternative non-homologous copies or be compensated by endophytes in long-term symbiosis. Cellulomonas sp. Gbtc_1 became the only bacteria to harbor both MEP and MVA pathways. Endophytes may perform the mutual transformation of IPP and DMAPP in the root. Ginkgo and bacteria may lead to the synthesis and derivatization of the carotenoid pathway. The isoquinoline alkaloid biosynthesis seemed lost in the Ginkgo root community, but L-dopa is more probably converted into dopamine as an essential signal-transduction substance. So, endophytes may participate in the secondary metabolism of the Ginkgo in a shared or complementary manner. Moreover, a few endophytic sequences predicted as Ty3/Gypsy and Ty1/Copia superfamilies exhibited extremely high similarity to those of Ginkgo. CDSs in such endophytic LTR-RT sequences were also highly homologous to one Ginkgo CDS. Therefore, LTR-RTs may be a rare unit flowing between the Ginkgo host and endophytes to exchange genetic information. Collectively, this research effectively expanded the insight on the symbiotic relationship between the Ginkgo host and the endophytes in the root.

13.
Heliyon ; 7(6): e07181, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34159268

RESUMEN

Xenobiotics are generally known as man-made refractory organic pollutants widely distributed in various environments. For exploring the bioremediation possibility of xenobiotics, two novel xenobiotics-degrading strains affiliated with Azonexaceae were isolated. We report here the phylogenetics, genome, and geo-distribution of a novel and ubiquitous Azonexaceae species that primarily joins in the cometabolic process of some xenobiotics in natural communities. Strains s22 and t15 could be proposed as a novel species within Dechloromonas based on genomic and multi-phylogenetic analysis. Pan-genome analysis showed that the 63 core genes in Dechloromonas include genes for dozens of metabolisms such as nitrogen fixation protein (nifU), nitrogen regulatory protein (glnK), dCTP deaminase, C4-dicarboxylate transporter, and fructose-bisphosphate aldolase. Strains s22 and t15 have the ability to metabolize nitrogen, including nitrogen fixation, NirS-dependent denitrification, and dissimilatory nitrate reduction. Moreover, the novel species possesses the EnvZ-OmpR two-component system for controlling osmotic stress and QseC-QseB system for quorum sensing to rapidly sense environmental changes. It is intriguing that this new species has a series of genes for the biodegradation of some xenobiotics such as azathioprine, 6-Mercaptopurine, trinitrotoluene, chloroalkane, and chloroalkene. Specifically, glutathione S-transferase (GST) and 4-oxalocrotonate tautomerase (praC) in this novel species play important roles in the detoxification metabolism of some xenobiotics like dioxin, trichloroethene, chloroacetyl chloride, benzo[a]pyrene, and aflatoxin B1. Using data from GenBank, DDBJ and EMBL databases, we also demonstrated that members of this novel species were found globally in plants (e.g. rice), guts (e.g. insect), pristine and contaminated regions. Given these data, Dechloromonas sp. strains s22 and t15 take part in the biodegradation of some xenobiotics through key enzymes.

14.
Front Microbiol ; 12: 681210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177865

RESUMEN

Endophytes are highly associated with plant growth and health. Exploring the variation of bacterial communities in different plant niches is essential for understanding microbe-plant interactions. In this study, high-throughput gene sequencing was used to analyze the composition and abundance of bacteria from the rhizospheric soil and different parts of the Macleaya cordata. The results indicated that the bacterial community structure varied widely among compartments. Bacterial diversity was observed to be the highest in the rhizospheric soil and the lowest in fruits. Proteobacteria, Actinobacteria, and Bacteroidetes were found as the dominant phyla. The genera Sphingomonas (∼47.77%) and Methylobacterium (∼45.25%) dominated in fruits and leaves, respectively. High-performance liquid chromatography (HPLC) was employed to measure the alkaloid content of different plant parts. Significant correlations were observed between endophytic bacteria and alkaloids. Especially, Sphingomonas showed a significant positive correlation with sanguinarine and chelerythrine. All four alkaloids were negatively correlated with the microbiota of stems. The predicted result of PICRUST2 revealed that the synthesis of plant alkaloids might lead to a higher abundance of endophytic microorganisms with genes related to alkaloid synthesis, further demonstrated the correlation between bacterial communities and alkaloids. This study provided the first insight into the bacterial community composition in different parts of Macleaya cordata and the correlation between the endophytic bacteria and alkaloids.

15.
Int J Syst Evol Microbiol ; 70(5): 3117-3122, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32250237

RESUMEN

A Gram-negative, aerobic, rod-shaped, non-motile by gliding bacterium was isolated from the estuarine sediment of the Pearl River in PR China and designated as strain q18T. Colonies were circular, smooth and yellow on marine agar after 48 h cultivation. Salinity, temperature and pH for optimal growth were 5 % (NaCl), 30 °C and 7, respectively. The 16S rRNA gene sequence of the strain q18T showed the highest similarity of 97.3 % to the type strain of Aequorivita echinoideorum CC-CZW007T. 16S rRNA gene-based phylogenetic analysis indicated that strain q18T grouped into the genus Aequorivita in the family Flavobacteriaceae of the phylum Bacteroidetes, and was distinct from all known species in the genus. Menaquinone (MK-6) was the main respiratory quinone detected in strain q18T. The major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids of strain q18T mainly comprised phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids and one unidentified polar lipid. The G+C content of the genome was ~42.8 mol%. The draft genome size of strain q18T was 3.3 Mbp. The average nucleotide identity values were around 79.0 % between strain q18T and reference Aequorivita strains. Based on the polyphasic analysis, strain q18T was confirmed to represent a novel species of the genus Aequorivita, for which the name Aequorivita lutea sp. nov., is proposed. The type strain is q18T (=CICC 24821T=KCTC 72764 T). Further, based on the results of phylogenetic, chemotaxonomic and phenotypic analyses, two species previously classified into the genus Vitellibacter, Vitellibacter todarodis Kim et al. 2018 and Vitellibacter aquimaris Thevarajoo et al. 2016, are transferred to the genus Aequorivita as Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov. respectively.


Asunto(s)
Flavobacteriaceae/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Ríos/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Estuarios , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Microbiología del Agua
16.
Environ Int ; 129: 308-319, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150973

RESUMEN

The bacterial community from estuarine sediment undertakes the bioremediation and energy transformation of anthropogenic pollutants especially polycyclic aromatic hydrocarbons (PAHs). However, information and studies on bacterial synergism and related metabolic profiles under the stress of PAHs are limited. In this study, sediments from estuarine were collected and co-incubated with a classical PAH, pyrene. The results showed that Alpha- and Gammaproteobacteria became abundant at the late domesticating phase with the dominant genus of ZD0117, the uncultivated bacteria affiliated into Gammaproteobacteria. Functional gene analysis based on metagenomic sequencing showed that quantitatively changes of genes directly related to the degradation of aromatic hydrocarbon coordinated with genes involved into various metabolic pathways such as acylglycerol degradation, nitrogen fixation, sulfate transport system, Arnon-Buchanan cycle, and Calvin cycle (P < 0.01 and |ρ| > 0.8). Fifty-six metagenome-assembled genomes (MAGs) were reconstructed, which were primarily composed by Alpha- and Gammaproteobacteria. Bacteria belonging to the phylum Proteobacteria were found to be abundant in MAGs and contained genes encoding for dehydrogenase, which are key enzymes for pyrene degradation. In addition, genomes of uncultivated bacteria were successfully reconstructed and were proven to carry genes of synergistically metabolizing pyrene. Based on analysis of typical MAGs, the metabolic pathways involved in syntrophic associations of a pyrene-degrading consortium were reconstructed. The results in this study could make us fully understand the metabolic patterns of pyrene-degrading consortium from the estuarine sediment and widen the scope of functional bacteria.


Asunto(s)
Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Pirenos/metabolismo , Bacterias/genética , Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Metagenómica , Microbiología del Suelo , Microbiología del Agua
17.
Front Microbiol ; 9: 520, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29628913

RESUMEN

The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in 2010 resulted in serious damage to local marine and coastal environments. In addition to the physical removal and chemical dispersion of spilled oil, biodegradation by indigenous microorganisms was regarded as the most effective way for cleaning up residual oil. Different microbiological methods were applied to investigate the changes and responses of bacterial communities after the DWH oil spills. By summarizing and analyzing these microbiological methods, giving recommendations and proposing some methods that have not been used, this review aims to provide constructive guidelines for microbiological studies after environmental disasters, especially those involving organic pollutants.

18.
Front Microbiol ; 9: 225, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520254

RESUMEN

The phylogenetic diversity of bacterial communities in response to environmental disturbances such as organic pollution has been well studied, but little is known about the way in which organic contaminants influence the acclimation of functional bacteria. In the present study, tolerance assays for bacterial communities from the sediment in the Pearl River Estuary were conducted with the isolation of functional bacteria using pyrene and different estrogens as environmental stressors. Molecular ecological networks and phylogenetic trees were constructed using both 16S rRNA gene sequences of cultured bacterial strains and 16S rRNA gene-based pyrosequencing data to illustrate the successions of bacterial communities and their acclimations to the different organic compounds. A total of 111 bacterial strains exhibiting degradation and endurance capabilities in response to the pyrene estrogen-induced stress were successfully isolated and were mainly affiliated with three orders, Pseudomonadales, Vibrionales, and Rhodobacterales. Molecular ecological networks and phylogenetic trees showed various adaptive abilities of bacteria to the different organic compounds. For instance, some bacterial OTUs could be found only in particular organic compound-treated groups while some other OTUs could tolerate stresses from different organic compounds. Furthermore, the results indicated that some new phylotypes were emerged under stresses of different organic pollutions and these new phylotypes could adapt to the contaminated environments and contribute significantly to the microbial community shifts. Overall, this study demonstrated a crucial role of the community succession and the acclimation of functional bacteria in the adaptive responses to various environmental disturbances.

19.
Biotechnol Biofuels ; 11: 42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467820

RESUMEN

BACKGROUND: Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance of fermentable sugars (e.g., galactose). Previous studies focused on the enhancement of biofuels production from different Clostridium species; however, there has been limited investigation into their metabolic pathways, especially on the conversion of biofuels from galactose, via whole genomic comparison and evolutionary analysis. RESULTS: Two galactose-utilizing Clostridial strains were examined and identified as Clostridium acetobutylicum strain WA and C. beijerinckii strain WB. Via the genomic sequencing of both strains, the comparison of the whole genome together with the relevant protein prediction of 33 other Clostridium species was established to reveal a clear genome profile based upon various genomic features. Among them, five representative strains, including C. beijerinckii NCIMB14988, C. diolis DSM 15410, C. pasteurianum BC1, strain WA and WB, were further discussed to demonstrate the main differences among their respective metabolic pathways, especially in their carbohydrate metabolism. The metabolic pathways involved in the generation of biofuels and other potential products (e.g., riboflavin) were also reconstructed based on the utilization of marine biomass. Finally, a batch fermentation process was performed to verify the fermentative products from strains WA and WB using 60 g/L of galactose, which is the main hydrolysate from algal biomass. It was observed that strain WA and WB could produce up to 16.98 and 12.47 g/L of biobutanol, together with 21,560 and 10,140 mL/L biohydrogen, respectively. CONCLUSIONS: The determination of the production of various biofuels by both strains WA and WB and their genomic comparisons with other typical Clostridium species on the analysis of various metabolic pathways was presented. Through the identification of their metabolic pathways, which are involved in the conversion of galactose into various potential products, such as biobutanol, the obtained results extend the current insight into the potential capability of utilizing marine red algal biomass and provide a systematic investigation into the relationship between this genus and the generation of sustainable bioenergy.

20.
Int J Syst Evol Microbiol ; 68(3): 957-961, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29458487

RESUMEN

An aerobic, Gram-stain-negative, rod-shaped, non-motile bacterium capable of degrading the polycyclic aromatic hydrocarbon pyrene was isolated from sediment of Pearl River and designated PrR001. 16S rRNA gene sequence analysis revealed that this strain was affiliated within the genus Defluviimonas in the family Rhodobacteraceae of the class Alphaproteobacteria and showed great similarity with the type strain Defluviimonas indica 20V17T (96.3 % similarity). The DNA G+C content of strain PrR001T was 68.3 mol%. The major cellular fatty acids comprised summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C19 : 0 cyclo ω8c, C18 : 0 3OH, and C18 : 0. The sole respiratory lipoquinone was ubiquinone-10. The main polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid, an unidentified aminophospholipid and three unidentified phospholipids. Based on physiological, chemotaxonomic and phylogenetic analysis, strain PrR001T is suggested as a novel species in the genus Defluviimonas, for which the name Defluviimonas pyrenivorans sp. nov. is proposed. The type strain of Defluviimonas pyrenivorans is PrR001T (=CICC 24263T=KCTC 62192T).


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Hidrocarburos Policíclicos Aromáticos/metabolismo , Rhodobacteraceae/clasificación , Ríos/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...