Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(34): e2312275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38573924

RESUMEN

High internal phase emulsions (HIPEs) have been of great interest for fabricating fluorinated porous polymers having controlled pore structures and excellent physicochemical properties. However, it remains a challenge to prepare stable fluorocarbon HIPEs, due to the lack of suitable surfactants. By randomly grating hydrophilic and fluorophilic side chains to polyphosphazene (PPZ), a comb-like amphiphilic PPZ surfactant with biodegradability is designed and synthesized for stabilizing water/fluorocarbon oil-based emulsions. The hydrophilic-lipophilic balance of PPZs can be controlled by tuning the grating ratio of the two side chains, leading to the preparation of stable water-in-oil HIPEs and oil-in-water emulsions, and the production of fluorinated porous polymers and particles by polymerizing the oil phase. These fluorinated porous polymers show excellent thermal stability and, due to the hydrophobicity and porous structure, applications in the field of oil/water separation can be achieved.

2.
ACS Appl Mater Interfaces ; 16(6): 7754-7767, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306229

RESUMEN

Multiactuated shape memory materials are a class of promising intelligent materials that have received great interest in the fields of self-healing, anticounterfeiting, biomedical, soft robotic, and smart thermal management applications. To obtain a light/heat-dual-actuated shape memory material for thermal management applications in fire safety, we have designed a type of halogen-free flame-retardant phase-change composite film based on polyaryloxyphosphazene (PDAP)/phosphorene (PR) hybrid foam as a support material and paraffin wax (PW) as a phase-change material (PCM). PDAP was synthesized as a flexible foam matrix through the ring-opening polymerization of hexachlorocyclotriphosphazene, followed by a substitution reaction of aryloxy groups. The porosity of the PDAP foam is improved by introducing PR nanosheets, facilitating a high latent heat capacity of the PDAP-PR/PW composite films for thermal management applications. The PDAP-PR/PW composite films can implement rapid shape recovery within 65 s in the heating process, which is much shorter than that of the corresponding film without PR nanosheets (185 s). Furthermore, the PDAP-PR/PW composite films also exhibit light-actuated shape memory behavior thanks to their good solar-to-thermal energy absorption and conversion contributed by PR nanosheets as a highly effective photothermal material. More importantly, the presence of PR nanosheets imparts an excellent flame-retardant property to the PDAP-PR/PW composite films. The PDAP-PR/PW composite film can be self-extinguished within 2 s after the flame. Through an innovative integration of flexible polyphosphazene foam, PR nanosheets, and solid-liquid PCM to obtain a sensitive actuating response to light and heat, this study offers a new approach for developing multiactuated and eco-friendly flame-retardant shape memory materials to meet the requirement of applications with a requirement of fire safety in soft actuators, thermal therapy, control devices, and so on.

3.
Chem Asian J ; 18(23): e202300718, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846640

RESUMEN

A leap-forward approach has been successfully devised to synthesize a novel hierarchical binary metal modified heteroatom doped 2D micro-/mesporous carbon-graphene nanostructure (NPSMC@Ir-Ru@rGO) for overall water splitting application. To investigate the role of decorating metals, different electrolcatalysts like NPSMC, NPSMC@rGO, NPSMC@Ir@rGO, and NPSMC@Ru@rGO were also synthesized and structural changes were compared and investigated by physiochemical techniques. All of the samples have shown electrocatalytic activities attributed to the presence of heteroatom (N, P, S) doped micro-/mesoporous carbonaceous matrix, amorphous carbon in the coexistence of graphitic lattice carbons, presence of active metal NPs (Ir and/-or Ru), an even distribution of active sites, and graphene 2D interconnected channels to promote electron transfer ability, respectively. However, the Ir-Ru metal codeped nanocatalyst (NPCMS@Ir-Ru@rGO) is proved to be an excellent electrocatalyst based on the synergistic role of Ir-Ru metals that necessitates the low overpotentials of 181 mV and 318 mV to convey a current density of 10 mA cm-2 towards the electroctalytic application of HER and OER, respectively. Furthermore, exhibiting the corresponding Tafel slopes (132 and 70 mV dec-1 ) in an alkaline medium. This work is anticipated to open up new avenues for the development of promising electrocatalysts based on active metals modified heteroatom doped carbon nanomaterials for energy applications.

4.
ACS Appl Mater Interfaces ; 13(27): 32094-32105, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34219461

RESUMEN

Modification by intumescent flame retardants is an effective way to impart antiflame properties to fabric materials. Polyphosphazene elastomers contain all three elements required by intumescent flame retardants: an acid source, a gas source, and a carbon source, making them all-in-one integrated intumescent flame retardants. In this work, halogen-free poly(dimethoxy)phosphazene (PDMP) loaded with 29.0 wt % phosphorus and 13.1 wt % nitrogen is shown to be an ideal flame retardant for fabric materials. For the first time, transparent and elastic PDMP was applied as an intumescent flame retardant for cotton fabric. The PDMP-coated cotton shows remarkable high-efficiency flame-retardant properties: (1) a self-extinguishing property during the vertical flame test is obtained when the add-on level reaches 5.3 wt %, with a lower smoke release character; (2) the limiting oxygen index (LOI) values of coated cotton are improved with increasing add-on level, and the thickness of the coating is measured to be at the nanolevel, 2540 nm when 10.9 wt % PDMP is coated. The coated cotton shows enhanced carbonization ability at lower temperatures, which is the key to imparting flame-retardant properties to cotton, and the PDMP-coated cotton shows remarkably lower peak heat release rate and total heat release compared to the control cotton during combustion. The durability of modified cotton was tested after 50 laundering cycles, which showed that the coating maintains 80% of its initial mass, and the after-laundering sample preserves the characteristics of self-extinguishing and a high LOI. Thus, the PDMP nanocoating-modified flame-retardant cotton fabric is sufficiently durable for practical application.

5.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207940

RESUMEN

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4'-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.

6.
ACS Appl Mater Interfaces ; 13(25): 29894-29905, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34128633

RESUMEN

Although high-performance graphene-based micro/nano flexible electronic devices have shown promising applications in numerous fields, there are still many problems in converting graphene into practical applications. Heteroatom-doped graphene materials are of huge importance because heteroatom doping can significantly change the electronic structure and introduce the active site, which benefits the integration with a promising substrate and achieves nondestructive transfer of carbon materials. Herein, we analyze in detail the pyrolysis gas composition of heteroatom-enriched phosphazenes with different structures and prepare a series of high-quality in situ N, P-codoped carbon-based films from phosphazene solid sources on a low-cost glass substrate by a convenient one-step method. The N, P-codoped carbon film shows reflectivity, good conductivity, and transparency. In addition, with the help of in situ "molecular welding", we achieve nondestructive transfer of a conductive carbon-based film from a glass substrate to promising layer-polyimide (PI) and prepare a flexible free-standing carbon/PI hybrid film with an excellent binding interface. The flexible conductive hybrid film shows excellent durability under an extremely low temperature environment and superior bending stability after 800 bending cycles. The results suggest that a phosphazene precursor is an amazing choice for constructing high-quality heteroatom-doped conductive carbon films. Besides, this work provides a promising way for nondestructive transfer of the conductive carbon-based films and large-scale preparation of large-area patterned conductive thin films.

7.
Sci Bull (Beijing) ; 66(10): 981-990, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36654255

RESUMEN

Although dielectric elastomer (DE) with substantial actuated strain (AS) has been reported 20 years ago, its scientific understanding remains unclear. The most accepted theory of DE, which is proposed in 2000, holds the view that AS of DE is induced by the Maxwell stress. According to this theory, materials have similar ratios of permittivity and Young's modulus should have similar AS, while the experimental results are on contrary to this theory, and the experimental AS has no relationship with ideal AS. Here, a new dipole-conformation-actuated strain cross-scale model is proposed, which can be generally applied to explain the AS of DE without pre-strain. According to this model, several characteristics of an ideal DE are listed in this work and a new DE based on polyphosphazene (PPZ) is synthesized. The AS of PPZ can reach 84% without any pre-strain. At last, a PPZ-based all soft artificial heart (ASAH) is built, which works in the similar way with natural myocardium, indicating that this material has great application potential and possibility in the construction of an ASAH for heart failure (HF) patients.

8.
J Phys Chem B ; 120(43): 11307-11316, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27726395

RESUMEN

Poly(aryloxy)phosphazenes emerge as an important class of hybrid polymers for a whole range of potential applications. To date, however, little is known about the detailed reaction mechanisms during preparation. This draws a great deal of attention for developing well-defined and well-controllable synthesis methods. In this paper, poly(dichlorophosphazene) (PDCP) has been successfully synthesized, and subsequent reaction with sodium phenoxide or phenol in the presence of K2CO3 can produce poly(bis(phenoxy)phosphazene) (PBPP). To elucidate the issues of branching and cross-linking, focuses have been placed on the change of various reaction conditions, in terms of concentration, temperature, time, solvent, catalysis, etc. The product polymers were examined using the techniques of 31P and 13C NMR, GPC, XPS, and FT-IR, in order to characterize the structural defects, in particular, branching and unwanted substitutions, such as addition of water molecules or oxidation of the phosphorus atoms on the backbone of the polymers. This work sheds light on the tailor design of poly(aryloxy)phosphazenes and other polyphosphazenes with more uniform and controllable structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA