Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Arch Microbiol ; 206(8): 359, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033087

RESUMEN

In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.


Asunto(s)
Fermentación , Lactobacillus plantarum , Polygonatum , Rizoma , Polygonatum/química , Polygonatum/metabolismo , Rizoma/química , Lactobacillus plantarum/metabolismo , Eutrofización , Extractos Vegetales/metabolismo , Extractos Vegetales/química , Ácido Láctico/metabolismo , Ácidos Grasos Volátiles/metabolismo , Reactores Biológicos/microbiología , Microbioma Gastrointestinal , Metabolómica
2.
J Pharm Biomed Anal ; 249: 116345, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38986348

RESUMEN

Ophiocordyceps xuefengensis (O. xuefengensis), the sister taxon of Ophiocordyceps sinensis (O. sinensis), is consumed as a "tonic food" due to its health benefits. However, little is known regarding the chemistry and bioactivity of O. xuefengensis. In this study, we characterized 80 indole-based alkaloids in the ethyl acetate fraction of O. xuefengensis by high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS), of which 54 indole-based alkaloids were identified as possibly new compounds. Furthermore, 29 of these compounds were established as potential anti-cancer compounds by ligand fishing combined with HPLC-Q-TOF-MS/MS. Moreover, molecular docking identified the NH- and OH- groups of these compounds as the key active groups. The present study has expanded the knowledge on the characteristic indole-based alkaloids and anti-cancer activity of O. xuefengensis.

3.
PeerJ ; 12: e17699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006032

RESUMEN

Background: Polygonatum odoratum (Mill.) Druce is a traditional Chinese herb that is widely cultivated in China. Polysaccharides are the major bioactive components in rhizome of P. odoratum and have many important biological functions. Methods: To better understand the regulatory mechanisms of polysaccharide accumulation in P. odoratum rhizomes, the rhizomes of two P. odoratum cultivars 'Y10' and 'Y11' with distinct differences in polysaccharide content were used for transcriptome and metabolome analyses, and the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified. Results: A total of 14,194 differentially expressed genes (DEGs) were identified, of which 6,689 DEGs were down-regulated in 'Y10' compared with those in 'Y11'. KEGG enrichment analysis of the down-regulated DEGs revealed a significant enrichment of 'starch and sucrose metabolism', and 'amino sugar and nucleotide sugar metabolism'. Meanwhile, 80 differentially accumulated metabolites (DAMs) were detected, of which 52 were significantly up-regulated in 'Y11' compared to those in 'Y10'. The up-regulated DAMs were significantly enriched in 'tropane, piperidine and pyridine alkaloid biosynthesis', 'pentose phosphate pathway' and 'ABC transporters'. The integrated metabolomic and transcriptomic analysis have revealed that four DAMs, glucose, beta-D-fructose 6-phosphate, maltose and 3-beta-D-galactosyl-sn-glycerol were significantly enriched for polysaccharide accumulation, which may be regulated by 17 DEGs, including UTP-glucose-1-phosphate uridylyltransferase (UGP2), hexokinase (HK), sucrose synthase (SUS), and UDP-glucose 6-dehydrogenase (UGDH). Furthermore, 8 DEGs (sacA, HK, scrK, GPI) were identified as candidate genes for the accumulation of glucose and beta-D-fructose 6-phosphate in the proposed polysaccharide biosynthetic pathways, and these two metabolites were significantly associated with the expression levels of 13 transcription factors including C3H, FAR1, bHLH and ERF. This study provided comprehensive information on polysaccharide accumulation and laid the foundation for elucidating the molecular mechanisms of medicinal quality formation in P. odoratum rhizomes.


Asunto(s)
Metaboloma , Polygonatum , Polisacáridos , Rizoma , Transcriptoma , Polygonatum/genética , Polygonatum/metabolismo , Polisacáridos/metabolismo , Rizoma/genética , Rizoma/metabolismo , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
4.
Drug Des Devel Ther ; 18: 2227-2248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882046

RESUMEN

Purpose: The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods: First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results: BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion: BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.


Asunto(s)
Ansiolíticos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Metabolómica , Ratas Sprague-Dawley , Animales , Ratas , Ansiolíticos/farmacología , Medicamentos Herbarios Chinos/farmacología , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Restricción Física , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
5.
Microb Cell Fact ; 23(1): 34, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273342

RESUMEN

BACKGROUND: Squalene epoxidase is one of the rate-limiting enzymes in the biosynthetic pathway of membrane sterols and triterpenoids. The enzyme catalyzes the formation of oxidized squalene, which is a common precursor of sterols and triterpenoids. RESULT: In this study, the squalene epoxidase gene (PcSE) was evaluated in Poria cocos. Molecular docking between PcSE and squalene was performed and the active amino acids were identified. The sgRNA were designed based on the active site residues. The effect on triterpene synthesis in P. cocos was consistent with the results from ultra-high-performance liquid chromatography-quadruplex time-of-flight-double mass spectrometry (UHPLC-QTOF-MS/MS) analysis. The results showed that deletion of PcSE inhibited triterpene synthesis. In vivo verification of PcSE function was performed using a PEG-mediated protoplast transformation approach. CONCLUSION: The findings from this study provide a foundation for further studies on heterologous biosynthesis of P. cocos secondary metabolites.


Asunto(s)
Fitosteroles , Triterpenos , Wolfiporia , Espectrometría de Masas en Tándem/métodos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Wolfiporia/genética , Wolfiporia/metabolismo , Simulación del Acoplamiento Molecular , Escualeno , Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Triterpenos/metabolismo
6.
Food Chem ; 431: 137127, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573744

RESUMEN

On-site multi-pesticide residues detection is particularly urgent and challenging. Here, we fabricated an enzyme-free ratiometric fluorescent detection system in combination with a hinge-like dual-channel 3D microfluidic paper analytical device (3D µPAD) for simultaneous visual detection of carbaryl and glyphosate. Blue-emission 1-naphthol (Em. 470 nm) was hydrolyzed from carbaryl, while yellow-emission 2,3-diaminophenazine (Em. 570 nm) was produced with the aid of Cu2+ for glyphosate sensing. Inner-filter effect between 1-naphthol or 2,3-diaminophenazine and green-emission carbon dots (Em. 510 nm) realized two ratiometric fluorescent detection systems. Remarkable color variation of green-blue for carbaryl (50.00-1100 µΜ) and yellow-green for glyphosate (5.00-600 µΜ) were observed on a dual-channel 3D µPAD without crosstalk. Their detection limits were 1.11 and 0.63 µΜ, respectively. The strategy realized simultaneous visual detection of carbaryl and glyphosate in food/herbal with excellent accuracy (spiked recoveries, 91.00-107.2%), high precision (RSD ≤ 8.43%), and superior selectivity.


Asunto(s)
Carbaril , Puntos Cuánticos , Colorantes Fluorescentes/química , Microfluídica , Puntos Cuánticos/química , Carbono/química , Límite de Detección , Glifosato
7.
Int J Med Mushrooms ; 25(12): 65-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37947065

RESUMEN

The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.


Asunto(s)
Wolfiporia , Wolfiporia/química , Cromatografía de Gases , Micelio/química , Cromatografía Líquida de Alta Presión , Cuerpos Fructíferos de los Hongos
8.
Heliyon ; 9(7): e18024, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449126

RESUMEN

Background: To investigate the regulation mechanism of hematopoiesis of Siwu paste (SWP) in anemia rats, which is a classic Chinese prescription used for nourishing blood or blood deficiency over 1000 years. Methods: Blood cell and biochemical analysis were used to evaluate the hematopoietic function of SWP in anemia rats. The intestinal microbial composition was analyzed with 16S rRNA gene sequencing, and the metabolites were profiled using UPLC-TripleTOF system nontargeting metabolomics. Results: SWP can improve the levels of red blood cells, hemoglobin, platelet, hematocrit value, white blood cells, lymphocyte, EPO, TPO, and GM-CSF in anemia rats, and significantly change the microbial community and its metabolites. The correlation analysis of intestinal microbiota-hematopoietic efficacy shows that 13 kinds of different intestinal flora were related to hematopoietic efficacy, in which Prevotella_1, Prevotella_9, Lactobacillus, and norank_f__Muribaculaceae were significantly positively correlated with hematopoiesis, nine kinds of intestinal flora are negatively correlated with hematopoietic effect. Compared with anemia rats, 218 potential metabolic biomarkers and 36 metabolites with significant differences were identified in the SWP treatment group, and the key metabolites were mainly amino acids and lipids. An in-depth analysis of metabolic pathways showed that SWP mainly affected 7 metabolic pathways, including aminobenzoic acid degradation and tryptophan metabolism. Conclusion: The study provides novel insights into the regulation of hematopoiesis of SWP in anemia rats that were correlated with gut microbiota and the metabolites, which through the restoration of the firmicutes/bacteroidetes ratio.

9.
J Pharm Biomed Anal ; 234: 115533, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336040

RESUMEN

Polygonatum cyrtonema Hua polysaccharide (PCP) is the main bioactive compound derived from the herb Polygonati Rhizoma, known for its anti-fatigue, antioxidant, immunomodulatory, and anti-inflammatory properties. However, its effectiveness on alleviating chemotherapy-induced muscle atrophy has been unclear. In this study, we utilized proteomic analysis to investigate the effects and mechanisms of PCP on gemcitabine plus cisplatin (GC) induced muscle atrophy in mice. Quality control analysis revealed that the functional PCP, rich in glucose, is a heterogeneous polysaccharide comprised of nine monosaccharides. PCP (64 mg/kg) significantly alleviated body muscle, organ weight loss, and muscle fiber atrophy in chemotherapy-induced cachectic mice. Moreover, PCP suppressed the decrease in serum immunoglobulin levels and the increase in pro-inflammatory factor interleukin-6 (IL-6). Proteomic analysis demonstrated that PCP contributed to the homeostasis of protein metabolism in gastrocnemius muscle. Diacylglycerol kinase (DGKζ) and cathepsin L (CTSL) were identified as primary PCP targets. Furthermore, the IL-6/STAT3/CTSL and DGKζ/FoxO/Atrogin1 signaling pathways were validated. Our findings suggest that PCP exerts an anti-atrophy effect on chemotherapy-induced muscle atrophy by regulating the autophagy-lysosome and ubiquitin-proteasome systems.


Asunto(s)
Antineoplásicos , Polygonatum , Ratones , Animales , Caquexia/inducido químicamente , Caquexia/tratamiento farmacológico , Interleucina-6 , Proteómica , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Cisplatino , Antineoplásicos/efectos adversos
10.
Food Chem ; 417: 135817, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905692

RESUMEN

The edible values of P. cocos from different origins vary significantly, therefore, it is important to investigate the traceability of geographical regions and identify the geographical biomarkers of P. cocos. The metabolites of P. cocos of the different geographical origins were assessed using liquid chromatography tandem-mass spectrometry, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA). The OPLS-DA could clearly discriminate the metabolites of P. cocos from the three cultivation regions (YN, Yunnan; AH, Anhui; JZ, Hunan). Finally, three carbohydrates, four amino acids, and four triterpenoids were selected as biomarkers for P. cocos origin tracing. Correlation matrix analysis revealed that the contents of biomarkers were closely related to geographical origin. Altitude, temperature, and soil fertility were the main factors responsible for the differences in biomarker profiles in P. cocos. The metabolomics approach provides an effective strategy for tracing and identifying the biomarkers of P. cocos from different geographical origins.


Asunto(s)
Wolfiporia , Cromatografía Líquida de Alta Presión/métodos , Wolfiporia/química , China , Cromatografía Liquida , Biomarcadores , Metabolómica/métodos
11.
Phytomedicine ; 114: 154775, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990008

RESUMEN

BACKGROUND: Nowadays, diabetic kidney disease (DKD) has become one of the most threatening to the end-stage renal diseases, and the early prevention of DKD is inevitable for Diabetes Mellitus (DM) patients. AIMS: Pyroptosis, a programmed cell death that mediates renal inflammation induced early renal injury. The trimethylamine n-oxide (TMAO) was also an independent risk factor for renal injury. Here, the associations between TMAO-induced pyroptosis and pathogenesis of DKD were studied, and the potential mechanism of Zuogui-Jiangtang-Yishen (ZGJTYS) decoction to prevent DKD was further investigated. METHOD: Using Goto-Kakizaki (GK) rats to establish the early DKD models. The 16S-ribosomal RNA (16S rRNA) sequencing, fecal fermentation and UPLC-MS targeted metabolism techniques were combined to explore the changes of gut-derived TMAO level under the background of DKD and the effects of ZGJTYS. The proximal convoluted tubule epithelium of human renal cortex (HK-2) cells was adopted to explore the influence of pyroptosis regulated by TMAO. RESULTS: It was demonstrated that ZGJTYS could prevent the progression of DKD by regulating glucolipid metabolism disorder, improving renal function and delaying renal pathological changes. In addition, we illustrated that gut-derived TMAO could promote DKD by activating the mROS-NLRP3 axis to induce pyroptosis. Furthermore, besides interfering with the generation of TMAO through gut microbiota, ZGJTYS inhibited TMAO-induced pyroptosis with a high-glucose environment and the underlying mechanism was related to the regulation of mROS-NLRP3 axis. CONCLUSION: Our results suggested that ZGJTYS inhibited the activation of pyroptosis by gut-derived TMAO via the mROS-NLRP3 axis to prevent DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Humanos , Ratas , Cromatografía Liquida , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , ARN Ribosómico 16S , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos
12.
Front Nutr ; 10: 1093761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776612

RESUMEN

Introduction: Polygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products. Methods: In this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis. Results: A total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase. Discussion: Aerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.

13.
Genome ; 66(4): 80-90, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36763968

RESUMEN

Polygonatum cyrtonema Hua is a traditional Chinese herb medicine, and it is widely distributed in China. The intrageneric taxonomy and phylogenetic relationships within Polygonatum have long been controversial due to their morphological similarity and lacking special DNA barcodes. In this paper, the complete chloroplast genome is a relatively conserved quadripartite structure including a large single copy region of 84 711 bp, a small single copy region of 18 210 bp, and a pair of inverted repeats region of 26 142 bp. A total of 342 simple sequence repeats were identified, and most of them were found to be composed of A/T, including 126 mono-nucleotides and 179 di-nucleotides. Nucleotide diversity was analyzed and eight highly variable regions (psbl∼trnT-CGU, atpF∼atpH, trnT-GGU∼psbD, psaJ∼rps20, trnL-UAG∼ndhD, ndhG∼ndhl, ndhA, and rpl32∼ccsA) were identified as potential molecular markers. Phylogenetic analysis based on the whole chloroplast genome showed that P. cyrtonema, within the family Asparagaceae, is closely related to Polygonatum sibiricum and Polygonatum kingianum. The sequence matK, trnT-GGU & ccsA, and ndhG∼ndhA were identified as three DNA barcodes. The assembly and comparative analysis of P. cyrtonema complete chloroplast genome will provide essential molecular information about the evolution and molecular biology for further study.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , Polygonatum , Filogenia , Polygonatum/genética , Plantas Medicinales/genética , China
14.
Artículo en Inglés | MEDLINE | ID: mdl-36700038

RESUMEN

This study aims to investigate the regulation effects of Xuanhuang Runtong tablets (XHRTs) on intestinal microbes and inflammatory signal toll receptor 5 (TLR5)/interleukin-17A (IL-17A) in STC mice. First, high-performance liquid chromatography (HPLC) was used to verify the composition of XHRT and quality control. Then, the defecation ability of STC mice was evaluated by measuring fecal water content and intestinal transit function. The pathological examination of colonic mucosa was observed by Alcian Blue and periodic acid Schiff (AB-PAS) staining. 16S ribosomal DNA (16S rDNA) genes were sequenced to detect the fecal microbiota. Western blotting, immunofluorescence, and real-time fluorescence quantitative PCR (qRT-PCR) were applied to detect the expression of aquaporin 3 (AQP3), connexin 43 (Cx43), TLR5, and IL-17A. The defecation function of the STC mice was significantly decreased. The amount of mucus secretion and the thickness of the colonic mucus layer were decreased, and the number of microbial species in the intestinal wall, such as Firmicutes/Bacteroidetes, anaerobic bacteria, and Alistipes, were also decreased. In addition, the expression of AQP3 and Cx43 was disordered, and the inflammatory factorsTLR5 and IL-17A were activated in the colon. The changes in the above indicators were significantly reversed by XHRT. This study demonstrates that XHRT provides a new strategy for the treatment of slow transit constipation by regulating the activation of the intestinal inflammatory signal TLR5/IL-17A mediated by gut microbes.

15.
Genomics ; 115(2): 110557, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36610559

RESUMEN

Early bolting of Peucedanum praeruptorum Dunn severely affects its quality. In this study, we compared with the root structure of P. praeruptorum and its four coumarins content between early bolting (CT) and unbolting (WT) at different growth stages. We found that the proportion of area outside the root cambium (Rs) was higher in the WT plants than in the CT plants and correlated positively with the proximity to the root tip. Furthermore, the content of all four coumarins was also higher in the WT plants relative to the CT plants. In addition, we identified 15,524 differentially expressed genes (DEGs) between the two plant varieties. 11 DEGs are involved in the photoperiod and gibberellin pathways that regulate early bolting and 24 genes involved in coumarins biosynthesis were also identified. Nevertheless, early bolting of P. praeruptorum does affect its quality formation, and further studies are needed to confirm its mechanism.


Asunto(s)
Apiaceae , Cumarinas , Cumarinas/química , Apiaceae/genética , Apiaceae/química , Apiaceae/metabolismo
16.
J Ethnopharmacol ; 303: 115997, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509256

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax quinquefolius Linn. is one of the most valuable herbal medicine in the world for its broad health benefits, including anti-diabetes. Ginsenoside Rb1, the principal active constituent of Panax quinquefolius Linn., could attenuate insulin resistance and metabolic disorders. The dysfunction of gut microbiota and fecal metabolites plays an important role in the pathogenesis of Type 2 Diabetes mellitus (T2DM). However, whether ginsenoside Rb1's hypoglycemic effect is related to gut microbiota remains elusive. AIM OF THE STUDY: Our study aimed to explore the insulin-sensitizing and anti-diabetic effects of ginsenoside Rb1 as well as the underlying mechanisms. MATERIALS AND METHODS: The T2DM model were established by high fat diet (HFD)-induced Kkay mice. The anti-diabetic effect of ginsenoside Rb1 (200 mg/kg/day) was evaluated by random blood glucose (RBG), fasting blood glucose (FBG), glucose tolerance test (OGTT), serum insulin level, insulin resistance index (HOMA-IR), pancreatic histology analysis, liver indexes, total triglyceride (TG) and total cholesterol (TC). Subsequently, 16S rRNA sequencing and LC-MS-based untargeted metabolomics were applied to characterize the microbiome and metabolites profile in HFD-induced Kkay mice, respectively. Finally, antibiotic treatment was used to validate the potential mechanism of ginsenoside Rb1 by modulating gut microbiota. RESULTS: Our results showed that ginsenoside Rb1 reduced blood glucose, OGTT, serum insulin level, HOMA-IR, liver indexes as well as pancreatic injury. In addition, the ginsenoside Rb1 reversed the gut microbiota dysbiosis in diabetic Kkay mice, as indicated by the elevated abundance of Parasutterella, decreased population of Alistipes, f_Prevotellaceae_unclassified, Odoribacter, Anaeroplasma. Moreover, ginsenoside Rb1 altered free fatty acid (FFA) levels in fecal metabolites, such as decreased the level of α-linolenic acid, 13-OxoODE, oleic acid, 13-HODE, arachidonic acid, palmitic acid, stearic acid, while increased the level of PC (14:0/22:1(13Z)) and PC (16:0/16:0). Notably, ginsenoside Rb1 failed to improve HFD-induced diabetes in Kkay mice with antibiotics intervention. CONCLUSION: These findings suggested that ginsenoside Rb1 may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play essential roles in diabetes-associated metabolic disorders and insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Enfermedades Metabólicas , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia , ARN Ribosómico 16S , Insulina , Metaboloma , Antibacterianos/farmacología , Dieta Alta en Grasa/efectos adversos
17.
Food Chem ; 403: 134346, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162271

RESUMEN

Simultaneous and high-performance detection of pesticides is still a considerable challenge and urgent need. Herein, a dual-emission carbon dots (CDs)-based nonenzymatic fluorescent sensing platform has been developed, which shows excellent sensitivity and selectivity in simultaneously detecting parathion-methyl (MP) and glyphosate. CDs with emissions at 440 nm (bCDs) and 660 nm (rCDs) were prepared by hydrothermal treatment of mulberry leaves and sodium hydroxide. bCDs response to hydrolyzed MP via inner filter effect, while rCDs sense glyphosate with the aid of Cu2+ by static quenching effect. Excellent linear correlations were found for MP (0.3-65.0 µM) and glyphosate (1.0-110.0 µM) with limits of detection at 0.14 and 0.60 µM. Notably, the presented dual-channel strategy was successfully applied in simultaneously detecting MP and glyphosate in food/herbal samples with acceptable recoveries, good precision, and high selectivity. Moreover, an ORlogicgatewas achieved for estimating food, herbal, or environmental safety.


Asunto(s)
Metil Paratión , Puntos Cuánticos , Carbono , Espectrometría de Fluorescencia , Límite de Detección , Colorantes Fluorescentes , Glifosato
18.
Molecules ; 27(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296678

RESUMEN

Neuronal-regulated cell death (RCD) due to the accumulation of ROS within the central nervous system (CNS) is one of the crucial causes of central system diseases. Caspase-dependent apoptosis is the only form of RCD. As research progressed, several nonapoptotic cell death pathway RCDs were identified. Ferroptosis is a nonapoptotic RCD characterized by lipid peroxidation and plasma membrane damage. Polygonatum cyrtonema Hua. Polysaccharides (PCP) are an effective antioxidant. Based on this, the protective effect and mechanism of PCP against H2O2-induced microglial injury were investigated. Furthermore, the protective mechanism of PCP against ferroptosis in microglia was explored. Our results indicated that PCP could reduce oxidative stress-induced ROS accumulation by activating the NRF2/HO-1 signaling pathway, thus attenuating RCD in microglia. Subsequent studies have revealed that PCP alleviates ferroptosis in microglia due to protein levels of ERASTIN/RSL3 inhibitor SLC7A11/GPX4 by activating the NRF2/HO-1 signaling pathway. Therefore, we hypothesized that PCP exerts antioxidative and anti-ferroptosis effects by activating the expression of the NRF2/HO-1 pathway. This facilitates new ideas for clinically effective prevention and treatment of diseases due to accumulated reactive oxygen species in the CNS. Simultaneously, PCP has the development potential as a new drug candidate for treating CNS diseases.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Polygonatum , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Microglía/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Polisacáridos/farmacología
19.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080128

RESUMEN

Morus alba L. is used in traditional Chinese medicine for its anti-diabetic activity; however, the part of the hypoglycemic activity and related active metabolites are still not fully clarified. In this study, the metabolites in the M. alba roots, leaves, twigs, and fruits extracts (70% ethanol extracts) were systematically identified, and their hypoglycemic activity was evaluated by the high-fat diet/streptozotocin-induced 2 diabetes mellitus (T2D) mouse model. A total of 60 high-level compounds, including 16 polyphenols, 43 flavonoids, and one quinic acid, were identified by high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) combined with the fragmentation pathways of standards and the self-established database. Among them, 23 metabolites were reported for the first time from this plant. In contrast to the extracts of M. alba leaves and fruits, the extracts of roots and twigs displayed significant hypoglycemic activity The glycemia was significantly reduced from 32.08 ± 1.27 to 20.88 ± 1.82 mmol/L and from 33.32 ± 1.98 to 24.74 ± 1.02 mmol/L, respectively, after 4 weeks of treatment with roots and twigs extracts. Compound 46 (morusin), which is a high-level component identified from the extracts of M. alba roots, also displayed significant activity in decreasing the blood glucose level of T2D mice reduced from 31.45 ± 1.23 to 23.45 ± 2.13 mmol/L. In addition, the extracts of roots and twigs displayed significant activity in reducing postprandial glycemia. This work marks the first comparison of the metabolites and hypoglycemic activity of M. alba roots, leaves, twigs, and fruits extracts, and provides a foundation for further development of M. alba extracts as anti-diabetic drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Morus , Animales , Glucemia/análisis , Cromatografía Liquida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Ratones , Morus/química , Extractos Vegetales/química , Hojas de la Planta/química , Espectrometría de Masas en Tándem
20.
Front Microbiol ; 13: 966231, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071963

RESUMEN

Poria cocos is an important edible and medicinal fungus with a long history. However, the lack of adequate genetic tools has hindered molecular genetic research and the genetic modification of this species. In this study, the endogenous U6 promoters were identified by mining data from the P. cocos genome, and the promoter sequence was used to construct a sgRNA expression vector pFC332-PcU6. Then, the protoplast isolation protocol was developed, and the sgRNA-Cas9 vector was successfully transformed into the cells of P. cocos via PEG/CaCl2-mediated transformation approach. Off-target sites were genome-widely predicted and detected. As a result, the target marker gene ura3 was successfully disrupted by the CRISPR-Cas9 system. This is the first report of genome editing in P. cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection. These data will open up new avenues for the investigation of genetic breeding and commercial production of edible and medicinal fungus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA