Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(15): 150401, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683009

RESUMEN

Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. Here, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications. We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.

2.
Phys Rev Lett ; 131(2): 020402, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505938

RESUMEN

Quantum many-body scarred systems host nonthermal excited eigenstates immersed in a sea of thermal ones. In cases where exact expressions for these special eigenstates are not known, it is computationally demanding to distinguish them from their exponentially many thermal neighbors. We propose a matrix-product-state (MPS) algorithm, dubbed DMRG-S, to extract such states at system sizes far beyond the scope of exact diagonalization. Using this technique, we obtain scarred eigenstates in Rydberg-blockaded chains of up to 80 sites and perform a finite-size scaling study to address the lingering question of the stability for the Néel state revivals in the thermodynamic limit. Our method also provides a systematic way to obtain exact MPS representations for scarred eigenstates near the target energy without a priori knowledge. In particular, we find several new scarred eigenstates with exact MPS representations in kinetically constrained spin and clock models. The combination of numerical and analytical investigations in our work provides a new methodology for future studies of quantum many-body scars.

3.
Sci Rep ; 11(1): 6462, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742037

RESUMEN

We report the exact dimer phase, in which the ground states are described by product of singlet dimer, in the extended XYZ model by generalizing the isotropic Majumdar-Ghosh model to the fully anisotropic region. We demonstrate that this phase can be realized even in models when antiferromagnetic interaction along one of the three directions. This model also supports three different ferromagnetic (FM) phases, denoted as x-FM, y-FM and z-FM, polarized along the three directions. The boundaries between the exact dimer phase and FM phases are infinite-fold degenerate. The breaking of this infinite-fold degeneracy by either translational symmetry breaking or [Formula: see text] symmetry breaking leads to exact dimer phase and FM phases, respectively. Moreover, the boundaries between the three FM phases are critical with central charge [Formula: see text] for free fermions. We characterize the properties of these boundaries using entanglement entropy, excitation gap, and long-range spin-spin correlation functions. These results are relevant to a large number of one dimensional magnets, in which anisotropy is necessary to isolate a single chain out from the bulk material. We discuss the possible experimental signatures in realistic materials with magnetic field along different directions and show that the anisotropy may resolve the disagreement between theory and experiments based on isotropic spin-spin interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...