Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
DNA Cell Biol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700464

RESUMEN

Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH), a type of overgrowth syndrome, is characterized by progressive megalencephaly, cortical brain malformations, and distal limb anomalies. Previous studies have revealed that the overactivity of the phosphatidylinositol 3-kinase-Protein kinase B pathway and the increased cyclin D2 (CCND2) expression were the main factors contributing to this disease. Here, we present the case of a patient who exhibited megalencephaly, polymicrogyria, abnormal neuronal migration, and developmental delay. Serum tandem mass spectrometry and chromosome examination did not detect any metabolic abnormalities or copy number variants. However, whole-exome sequencing and Sanger sequencing revealed a de novo nonsense mutation (NM_001759.3: c.829C>T; p.Gln277X) in the CCND2 gene of the patient. Bioinformatics analysis predicted that this mutation may disrupt the structure and surface charge of the CCND2 protein. This disruption could potentially prevent polyubiquitination of CCND2, leading to its resistance against degradation. Consequently, this could drive cell division and growth by altering the activity of key cell cycle regulatory nodes, ultimately contributing to the development of MPPH. This study not only presents a new case of MPPH and expands the mutation spectrum of CCND2 but also enhances our understanding of the mechanisms connecting CCND2 with overgrowth syndromes.

2.
J Org Chem ; 89(10): 6929-6936, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38717970

RESUMEN

This study reports selective dual amino acylation and C-H bromination of aniline compounds enabled by Cu/O2 catalyst systems. This method involves crucial oxidation-induced C-CN bond cleavage of α-methylene nitriles to generate an acylcyanide intermediate that is facilely intercepted by anilines. After amino acylation, the Cu(II) precatalyst in combination with NBS generates Cu(III)-Br in situ that engages in selective electrophilic para- or ortho-C-H bromination. The substrate scope, mechanistic aspects, and late-stage functionalization of biologically active anilines are studied. This study shows the synthetic potential of oxidative C-CN bond activation of nitriles for the development of valuable reactions.

3.
Electrochem Energ Rev ; 7(1): 14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586610

RESUMEN

Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications.

4.
Nano Lett ; 24(17): 5206-5213, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647212

RESUMEN

Single Atoms Catalysts (SACs) have emerged as a class of highly promising heterogeneous catalysts, where the traditional bottom-up synthesis approaches often encounter considerable challenges in relation to aggregation issues and poor stability. Consequently, achieving densely dispersed atomic species in a reliable and efficient manner remains a key focus in the field. Herein, we report a new facile electrochemical knock-down strategy for the formation of SACs, whereby the metal Zn clusters are transformed into single atoms. While a defect-rich substrate plays a pivotal role in capturing and stabilizing isolated Zn atoms, the feasibility of this novel strategy is demonstrated through a comprehensive investigation, combining experimental and theoretical studies. Furthermore, when studied in exploring for potential applications, the material prepared shows a remarkable improvement of 58.21% for the Li+ storage and delivers a capacity over 300 Wh kg-1 after 500 cycles upon the transformation of Zn clusters into single atoms.

5.
J Org Chem ; 88(24): 16735-16741, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38050841

RESUMEN

This study reports sequential dehydrogenation and transfer oxygenation of 1,2-diarylepoxides by high-valent phenCu(III)(CF3)3 and DMSO to produce 1,2-diketones. The Cu(III)-CF3 compound serves as a CF3 radical source to abstract the hydrogen atom of the epoxide ring. The resulting ether α-carbon radical undergoes ring-opening rearrangement to give a ketone α-carbon radical intermediate, which is oxygenated by DMSO with the release of Me2S. The combination of a Cu(III)-CF3 compound and DMSO may be exploited to develop other novel oxidation reactions.

6.
ACS Appl Mater Interfaces ; 15(51): 59454-59462, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38102993

RESUMEN

Atomically dispersed single-atom catalysts are intriguing catalysts in the field of electrocatalysis for nearly 100% exploitation of metal atoms. However, they are still far from practical usage due to the scaling relationship limit and metal loading limit. Generation of a diatomic complex would offer superior catalytic performance through the cooperation of two neighboring atoms as active sites. Herein, Fe/Co dual atomic sites embedded in a tube-on-plate hollow structure are designed and fabricated for an efficient electrochemical oxygen reduction reaction (ORR). The unique structure composed of ultrathin nanotube building blocks dramatically maximizes the surface area for copious active site exposure. Thanks to the synergetic interaction between Fe/Co pairs, the obtained FeCo/NC exhibits outstanding ORR activity and stability in alkaline media. Furthermore, density functional theory calculations have revealed that the remarkable activity is attributed to the electron-deficient Fe sites in FeCoN6. This work may pave the way for the innovative design of highly dispersed dual-site catalysts for broader applications in the realm of electrochemical catalysis.

7.
Chem Commun (Camb) ; 59(64): 9702-9705, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37469328

RESUMEN

In this study, we present a facile formic acid treatment to rejuvenate aged graphite anodes from spent lithium-ion batteries (LIBs) without damaging the electrode structure. This method effectively removes the interfacial blocking layer, improving capacity and rate performance. Our approach contributes to sustainable battery recycling strategies for spent graphite anodes in LIBs.

8.
Huan Jing Ke Xue ; 44(3): 1620-1635, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922223

RESUMEN

In this study, As, Cd, Cr, Hg, and Pb in the surface soil of cropland in Lanzhou were studied, and the combination of descriptive statistics, single-factor accumulation index, comprehensive accumulation index, geostatistical method, and a geographically weighted regression model (GWR) was used to investigate their accumulation status, spatial distribution, and influencing factors, in order to provide scientific basis for the precise control of heavy metal accumulation risk in the study area. The results showed that:①the single-factor accumulation index showed that the accumulation of Hg and Cd in the study area was the largest, followed by that of Pb and As, and that of Cr was the smallest; the comprehensive accumulation index showed that the accumulation rate of heavy metals was as high as 98.11%, of which 54.81% was mild accumulation and 43.30% was moderate and above accumulation. However, there was no heavy metal pollution in the surface soil of cultivated land in Lanzhou. ② Spatial autocorrelation analysis showed that there was no heavy metal pollution in the surface soil of Lanzhou, but there was accumulation in a few areas. The spatial autocorrelation analysis showed that the spatial autocorrelation of the Cr, Hg, and Pb single-factor accumulation indices was moderate, indicating that they were influenced by both random and structural factors; the spatial autocorrelation of the other two heavy metals was weak, indicating that they were mainly influenced by random factors, among which human factors were more influential. The Hg single-factor accumulation index was high in the middle and low in the fourth; the integrated accumulation index increased from northwest to southeast and decreased from the middle to both sides. ③ Geographically weighted regression (GWR) analysis showed that altitude, slope length, distance from rivers, soil organic matter (SOM) content, precipitation, air temperature, and surface temperature all showed positive driving effects, whereas the rest of the factors showed negative driving effects and significant spatial heterogeneity and instability (P<0.05). The magnitudes of the factor effects were in the order of soil characteristics>topographic characteristics>climate characteristics>location characteristics>socioeconomic characteristics>vegetation characteristics, with the largest contribution of SOM content, followed by that of altitude and air temperature, and the smallest of normalized difference vegetation index (NDVI) values. Compared with the other feature factors, the location feature factors had stronger spatial heterogeneity.

9.
Org Biomol Chem ; 21(4): 728-731, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36601719

RESUMEN

A convenient method to prepare aryl formates is reported herein that exploits difluorocarbene to serve as a CO surrogate. This reaction is proposed to occur through a sequential O-difluoromethylation of phenol, followed by α-C-F bond functionalization of the resulting aryl difluoromethyl ether intermediate by phenol or moisture through fluorosemiacetal or orthoformate intermediates. Late-stage modification of biologically and materially active compounds is demonstrated.

10.
Org Biomol Chem ; 21(5): 935-939, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602103

RESUMEN

Cu(III)-CF3 compounds are reported herein as novel coupling reagents to mediate ester synthesis from carboxyl acids and alcohols/phenols. Carboxylic acids are transformed to trifluoromethyl ester and acyl fluoride activated species that interact with each other. The broad substrate scope and late-stage application of this method are demonstrated. This study opens up new opportunities to develop interesting reactions using Cu(III)-CF3 compounds without transferring a CF3 group to the products.

11.
J Org Chem ; 87(21): 13564-13572, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36260868

RESUMEN

A one-pot three-component reaction of two anilines (or one aniline and one alkylamine) and in situ-generated difluorocarbene is developed herein to enable efficient construction of formamidines. Crucial formimidoyl fluoride intermediate RN═CHF is proposed from the reaction of a primary aniline and difluorocarbene. Ensuing nucleophilic iminyl substitution of this intermediate with a second amine allows cross-condensation of the two amines to produce formamidines. When only one type of primary aniline is used as the substrate, the difluoromethylated homo-condensation products can also be produced under a 1:1 molar ratio of aniline/difluorocarbene. Intramolecular variant of this method allows concise synthesis of benzimidazoquinazolines and nitrogen-fused/spirocyclic compounds, showing the potential of this method in organic synthesis. More interesting reactions are anticipated by exploiting the reactivity of difluorocarbene and primary amines to isocyanides or the formimidoyl fluoride intermediates.

12.
Huan Jing Ke Xue ; 43(9): 4767-4778, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096617

RESUMEN

Heavy metals in cultivated soil may migrate and transform through the food chain to harm the ecological environment and human health. At present, the ecological environment and human health risks of heavy metals in cultivated soil in Lanzhou city remain unclear, which impacts the effective management and control of heavy metals. The potential ecological risk hazard index was used to evaluate the ecological environmental risks of As, Cd, Cr, Hg, and Pb in the surface soil of cultivated land in Lanzhou, and the health risk model proposed by USEPA and the recommended standard were used to evaluate their human health risk. The main factors influencing the spatial differentiation of human health risk were explored by using geographic detectors. The risk of heavy metals to the ecological environment of the cultivated land surface soil in the study area was mainly medium (65.25%), and small portions were low (13.80%) and high (20.95%). The low-risk areas were mainly located in the southeast of Yongdeng County, the middle and north of Yuzhong County, and the southwest of Gaolan County. Moderate risk areas were distributed in three counties and five districts. The high-risk areas were located in the north and southeast of Yongdeng County, the south of Chengguan District, the northeast of Qilihe, the east of Xigu District, and the middle of Yuzhong County. The non-carcinogenic and carcinogenic risks of five types of heavy metal exposure pathways were as follows:oral ingestion>skin contact>respiratory ingestion; generally speaking, children were at higher risk than adults. The non-carcinogenic risk in children was higher than that in adults; however, there was no such risk for local residents, as they were all less than 1. At the same time, the carcinogenic risk of As was greater than 1×10-5 (children 2.04×10-5) and less than 1×10-4 (adults 1.91×10-5), respectively. This indicated an acceptable medium risk to the local residents, and the risk to children was again greater than that to adults. Geographical detector analysis showed that average precipitation during the sampling season had the greatest impact on the spatial differentiation of human health risks of As and Cd, GDP had the greatest impact on the spatial differentiation of human health risks of Cr, and distance from the railway had the greatest impact on the spatial differentiation of human health risks of Hg and Pb. Interaction detection showed that all factors were enhanced by double factors. In addition to leading factors, other factors such as pH, slope, and altitude also enhanced the influence of leading factors on the spatial differentiation of heavy metal risk in cultivated soil.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Adulto , Cadmio/análisis , Carcinógenos/análisis , Niño , Monitoreo del Ambiente , Humanos , Plomo/análisis , Mercurio/análisis , Metales Pesados/análisis , Metales Pesados/toxicidad , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
13.
Angew Chem Int Ed Engl ; 61(40): e202209029, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35939056

RESUMEN

Direct C-H trifluoromethylation of arenes and heteroarenes poses an important synthetic challenge that is highly desirable. High-valent CuIII -CF3 compounds have often been invoked in copper-mediated trifluoromethylation reactions, but the fundamental reactivity toward arenes is elusive. Herein, direct C-H trifluoromethylation of arenes/heteroarenes by a high-valent CuIII -CF3 compound is disclosed for the first time. The CuIII -CF3 compound serves CF3 radical and a CuII oxidant by homolytic cleavage of a CuIII -CF3 bond, which engage synergistically in a SE Ar type reaction with arenes. The presence of K2 S2 O8 co-oxidant can significantly improve the reaction yields. This reaction shows good efficiency, broad functional group tolerance, and the potential in late-stage functionalization. The reactivity of high-valent CuIII -CF3 compounds disclosed in this study represents an important progress in organofluorine and CuIII chemistry.


Asunto(s)
Cobre , Oxidantes , Catálisis , Cobre/química
14.
Ying Yong Sheng Tai Xue Bao ; 33(2): 477-488, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35229522

RESUMEN

Invasive process of alien species is affected by not only the invaded habitats, but also the surrounding landscape matrix. Understanding the effects of landscape matrix on alien species is of great significance for controlling invasive alien species. We surveyed plant communities along the water-level fluctuating zone (WLFZ) of the Three Gorges Reservoir. Invasive status of alien plant species was evaluated. Totally 10 spatial scales of the surrounding landscape matrix in the scope of 2000 m (including WLFZ) were classified, and 14 landscape indices were applied to analyze the landscape matrix composition and configuration. Using the principal component analysis and correlation analysis, the effects of landscape matrix on the alien invasive plant species and associated scale effect were tested. Results showed that a total of 42 alien invasive plant species were found in the WLFZ, belonging to 17 families and 36 genera. Fuling was a dividing place to differentiate invasive species distribution. The number of the alien invasive species between Fuling and the Three Gorges Dam was found more than that between Fuling and Jiangjin. For the all scales (within 2000 m). The higher the landscape matrix fragmentation was, the more difficult the alien species invading. The higher landscape connectivity was, the easier the alien species invading. The effects of landscape matrix composition and configuration on the invasive plant diversity at large scales (1200-2000 m) was more significant than those at small scales (200-1000 m), in which landscape matrix composition and configuration at 1200-1400 m showed the strongest effect, demonstrating a significant spatial scale effect. Different invasive plant species showed the scale effects of landscape matrix composition and configuration. At all scales, Xanthium strumarium and Bidens frondosa showed weak correlations with landscape indices, but Bidens tripartita and Erigeron canadensis showed strong correlations. Landscape matrix was closely related to invasive plant species, and demonstrated a significant scale effect. The alien invasive plant species could be traced to the landscape matrix at large scales. Grassland and forest patches at the small scales could be used as the 'stepping stone' for the alien species transiting before they arrived at the WLFZ. In order to control alien plants in the WLFZ, land-use management and optimization should be strengthened at different scales of landscape matrix on the basis of enhancement of habitat management. A diversified comprehensive control for alien species should thus be taken into account.


Asunto(s)
Especies Introducidas , Agua , China , Ecosistema , Humanos , Plantas
15.
Adv Mater ; 34(1): e2105204, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34610187

RESUMEN

The rational design of catalysts' spatial structure is vitally important to boost catalytic performance through exposing the active sites, enhancing the mass transfer, and confining the reactants. Herein, a dual-linker zeolitic tetrazolate framework-engaged strategy is developed to construct assembled hollow plates (AHP) of N-rich carbon (NC), which is loaded with single-Ni atoms to form a highly efficient electrocatalyst (designated as Ni-NC(AHP)). In the carbonization process, the thermally unstable linker (5-aminotetrazole) serves as the self-sacrificial template and the other linker (2-methylimidazole) mainly serves as the carbon and nitrogen source to form hollow NC matrix. The formed Ni-NC(AHP) catalyst possesses enhanced mesoporosity and more available surface area, thus promoting mass transport and affording abundant accessible single-Ni sites. These features contribute to remarkable performance for electrochemical CO2 reduction with exceptionally high selectivity of nearly 100% towards CO in a wide potential range and dramatically enhanced CO partial current density.

16.
Angew Chem Int Ed Engl ; 60(42): 22885-22891, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34351663

RESUMEN

Exploring earth-abundant electrocatalysts with excellent activity, robust stability, and multiple functions is crucial for electrolytic hydrogen generation. Porous phosphorized CoNi2 S4 yolk-shell spheres (P-CoNi2 S4 YSSs) were rationally designed and synthesized by a combined hydrothermal sulfidation and gas-phase phosphorization strategy. Benefiting from the strengthened Ni3+ /Ni2+ couple, enhanced electronic conductivity, and hollow structure, the P-CoNi2 S4 YSSs exhibit excellent activity and durability towards hydrogen/oxygen evolution and urea oxidation reactions in alkaline solution, affording low potentials of -0.135 V, 1.512 V, and 1.306 V (versus reversible hydrogen electrode) at 10 mA cm-2 , respectively. Remarkably, when used as the anode and cathode simultaneously, the P-CoNi2 S4 catalyst merely requires a cell voltage of 1.544 V in water splitting and 1.402 V in urea electrolysis to attain 10 mA cm-2 with excellent durability for 100 h, outperforming most of the reported nickel-based sulfides and even noble-metal-based electrocatalysts. This work promotes the application of sulfides in electrochemical hydrogen production and provides a feasible approach for urea-rich wastewater treatment.

17.
Adv Mater ; 33(40): e2103004, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34418171

RESUMEN

Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long-time debate in the catalysis community. Here, an efficient bimetallic Ni-Fe selenide-derived OER electrocatalyst is reported and the structure-activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre-catalyst and post-formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.

18.
Huan Jing Ke Xue ; 42(8): 3904-3912, 2021 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-34309277

RESUMEN

To evaluate the pollution by polycyclic aromatic hydrocarbons (PAHs) in the surface soil of the core urban area of Lanzhou, 62 topsoil samples were collected from the area. The soil samples were analyzed for the content of 16 priority PAHs, using gas chromatography-mass spectrometry. Descriptive statistical methods were used to characterize contamination by PAHs. An absolute principal component analysis-multiple linear regression (APCS-MLR) model was applied to determine the sources of PAHs in the soil samples, and the accuracy of the model results was verified. Finally, the main influence regions of each source were determined with a geo-statistical method. The results showed that the contents of Σ16 PAHs in the surface soils of Lanzhou ranged from 1069 to 7377 µg ·kg-1, with an average of 2423 µg ·kg-1. High molecular weight PAHs (4-6 rings) were dominant, accounting for 72.81% of the Σ16 PAHs. Verification results of the APCS-MLR model showed that the measured values were in good correspondence with the predicted values, which indicated that the model had good applicability for source apportionment of soil PAHs in the study area. The main sources of PAHs in Lanzhou were traffic emissions (35.42%), petroleum emissions (29.88%), and a mixture of coal and biomass combustion (33.91%). The sources were greatly affected by human activities, and high values were mainly distributed in traffic-intensive and industrial areas. The results indicated that the sources of soil PAHs were complex and influenced by anthropogenic activities in the study area. Stringent control measures should be placed on the sources and areas of influence that contribute to soil PAHs to reduce the emissions and the level of soil pollution resulting from PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , China , Carbón Mineral/análisis , Monitoreo del Ambiente , Contaminación Ambiental , Sistemas de Información Geográfica , Humanos , Modelos Lineales , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
19.
Angew Chem Int Ed Engl ; 60(41): 22189-22194, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34313363

RESUMEN

Prussian blue analogs (PBAs) are considered as reliable and promising cathode materials for aqueous Zn-ion batteries (AZIBs), but they suffer from low capacity and poor cycling stability due to insufficient active sites and structural damage caused by the ion insertion/extraction processes. Herein, a template-engaged ion exchange approach has been developed for the synthesis of Co-substituted Mn-rich PBA hollow spheres (CoMn-PBA HSs) as cathode materials for AZIBs. Benefiting from the multiple advantageous features including hollow structure, abundant active sites, fast Zn2+ ion diffusion, and partial Co substitution, the CoMn-PBA HSs electrode shows efficient zinc ion storage properties in terms of high capacity, decent rate capability and prolonged cycle life.

20.
Angew Chem Int Ed Engl ; 60(35): 19068-19073, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34137497

RESUMEN

Highly efficient electrocatalysts are essential for the production of green hydrogen from water electrolysis. Herein, a metal-organic framework-assisted pyrolysis-replacement-reorganization approach is developed to obtain ultrafine Pt-Co alloy nanoparticles (sub-10 nm) attached on the inner and outer shells of porous nitrogen-doped carbon nanotubes (NCNT) with closed ends. During the thermal reorganization, the migration of Pt-Co nano-alloys to both surfaces ensures the maximized exposure of active sites while maintaining the robust attachment to the porous carbon matrix. Density functional theory calculations suggest a nearly thermodynamically-neutral free energy of adsorption for hydrogen intermediates and diversified active sites induced by alloying, thus resulting in a great promotion in intrinsic activity towards the hydrogen evolution reaction (HER). Benefiting from the delicate structural design and compositional modulation, the optimized Pt3 Co@NCNT electrocatalyst manifests outstanding HER activity and superior stability in both acidic and alkaline media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...