Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
AAPS J ; 26(3): 59, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724865

RESUMEN

Drug clearance in obese subjects varies widely among different drugs and across subjects with different severity of obesity. This study investigates correlations between plasma clearance (CLp) and drug- and patient-related characteristics in obese subjects, and evaluates the systematic accuracy of common weight-based dosing methods. A physiologically-based pharmacokinetic (PBPK) modeling approach that uses recent information on obesity-related changes in physiology was used to simulate CLp for a normal-weight subject (body mass index [BMI] = 20) and subjects with various severities of obesity (BMI 25-60) for hypothetical hepatically cleared drugs with a wide range of properties. Influential variables for CLp change were investigated. For each drug and obese subject, the exponent that yields perfect allometric scaling of CLp from normal-weight subjects was assessed. Among all variables, BMI and relative changes in enzyme activity resulting from obesity proved highly correlated with obesity-related CLp changes. Drugs bound to α1-acid glycoprotein (AAG) had lower CLp changes compared to drugs bound to human serum albumin (HSA). Lower extraction ratios (ER) corresponded to higher CLp changes compared to higher ER. The allometric exponent for perfect scaling ranged from -3.84 to 3.34 illustrating that none of the scaling methods performed well in all situations. While all three dosing methods are generally systematically accurate for drugs with unchanged or up to 50% increased enzyme activity in subjects with a BMI below 30 kg/m2, in any of the other cases, information on the different drug properties and severity of obesity is required to select an appropriate dosing method for individuals with obesity.


Asunto(s)
Índice de Masa Corporal , Modelos Biológicos , Obesidad , Humanos , Obesidad/metabolismo , Tasa de Depuración Metabólica/fisiología , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Hígado/metabolismo , Orosomucoide/metabolismo , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/análisis , Masculino , Adulto
3.
Biomed Pharmacother ; 174: 116451, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520869

RESUMEN

The transcription factor, signal transducer, and stimulator of transcription 3 (STAT3) is a potential target in osteoarthritis (OA) treatment. Although xanthatin (XA), a biologically active substance derived from Xanthium strumarium L, specifically inhibits STAT3 phosphorylation at Tyr705, the mechanism underlying its inhibitory effect on OA progression remains unclear. In this study, our objective was to explore the therapeutic effects exerted by XA on OA and the underlying molecular mechanisms. The effects of XA treatment on mouse OA models subjected to destabilization of the medial meniscus using medial collateral ligament transection, as well as on interleukin-1ß (IL-1ß)-induced mouse chondrocytes, were examined. Histological changes in cartilage and subchondral bone (SCB), as well as changes in the expression levels of osteophytes, cartilage degeneration- and osteoclast differentiation-related factors, and the role of XA-related signaling pathways in human cartilage tissue, were studied using different techniques. XA inhibited STAT3 phosphorylation at Tyr705 and further attenuated the activity of nuclear factor-κB (NF-κB) in chondrocytes and osteoclasts. In vitro, XA administration alleviated pro-inflammatory cytokine release, extracellular matrix catabolism, and RANKL-mediated osteoclast differentiation. In vivo, intraperitoneal injection of XA exerted a protective effect on cartilage degeneration and SCB loss. Similarly, XA exerted a protective effect on human cartilage tissue by inhibiting the STAT3/NF-κB signaling pathway. Overall, our study elucidated the therapeutic potential of XA as a small-molecule inhibitor of STAT3-driven OA progression. This discovery may help enhance innovative clinical interventions against OA.


Asunto(s)
Condrocitos , Progresión de la Enfermedad , Furanos , Ratones Endogámicos C57BL , FN-kappa B , Osteoartritis , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Humanos , Ratones , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Masculino , Fosforilación/efectos de los fármacos , Modelos Animales de Enfermedad , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo
4.
Nat Commun ; 15(1): 2410, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499551

RESUMEN

The magnetic type-II Weyl semimetal (MWSM) Co3Sn2S2 has recently been found to host a variety of remarkable phenomena including surface Fermi-arcs, giant anomalous Hall effect, and negative flat band magnetism. However, the dynamic magnetic properties remain relatively unexplored. Here, we investigate the ultrafast spin dynamics of Co3Sn2S2 crystal using time-resolved magneto-optical Kerr effect and reflectivity spectroscopies. We observe a transient magnetization behavior, consisting of spin-flipping dominated fast demagnetization, slow demagnetization due to overall half-metallic electronic structures, and an unexpected ultrafast magnetization enhancement lasting hundreds of picoseconds upon femtosecond laser excitation. By combining temperature-, pump fluence-, and pump polarization-dependent measurements, we unambiguously demonstrate the correlation between the ultrafast magnetization enhancement and the Weyl nodes. Our theoretical modelling suggests that the excited electrons are spin-polarized when relaxing, leading to the enhanced spin-up density of states near the Fermi level and the consequently unusual magnetization enhancement. Our results reveal the unique role of the Weyl properties of Co3Sn2S2 in femtosecond laser-induced spin dynamics.

5.
Nat Commun ; 15(1): 2169, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461277

RESUMEN

Extensive investigations on the moiré magic angle in twisted bilayer graphene have unlocked the emerging field-twistronics. Recently, its optics analogue, namely opto-twistronics, further expands the potential universal applicability of twistronics. However, since heat diffusion neither possesses the dispersion like photons nor carries the band structure as electrons, the real magic angle in electrons or photons is ill-defined for heat diffusion, making it elusive to understand or design any thermal analogue of magic angle. Here, we introduce and experimentally validate the twisted thermotics in a twisted diffusion system by judiciously tailoring thermal coupling, in which twisting an analog thermal magic angle would result in the function switching from cloaking to concentration. Our work provides insights for the tunable heat diffusion control, and opens up an unexpected branch for twistronics -- twisted thermotics, paving the way towards field manipulation in twisted configurations including but not limited to fluids.

6.
Sci Total Environ ; 924: 171574, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462001

RESUMEN

Besides be affected by coal confining pressure, coal seams are also be affected by the surrounding pressure during mining. To understand the heat release characteristics and microstructural evolution of oxidization within coal under different gas pressures is of great significance. For this reason, a combination of theoretical research and test analysis was adopted, which includes differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and mercury intrusion method (MIP). The influences of gas phase transformation and migration on the oxidation and spontaneous combustion processes of gas-containing coal under different gas pressures were explored. The distributions and variations in heat release, gas derivation, pore structure and functional group characteristics during the oxidation of gas-containing coal were analysed. We clarified the cross-coupling attributes of heat, seepage and chemical properties in the oxidation of gas-containing coal. The experimental results show that the methane within coal migrates outward in pores with the increase of temperature, which inhibits the penetration and adsorption of oxygen, thereby inhibiting the coal­oxygen composite reaction and delaying the heat accumulation within coal. There is a positive correlation between loose and porous characteristics of coal and gas pressure. With the continuous increase of coal temperature, the pore connectivity of high-pressure gas-containing coal is enhanced, which increases the risk of coal spontaneous combustion. The research results are of great significance to the theoretical research on the prevention and prediction of spontaneous combustion of gas-containing coal.

7.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351345

RESUMEN

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Asunto(s)
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliales , Neoplasias Hepáticas , Periostina , Animales , Ratones , Carcinoma Hepatocelular/patología , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Neoplasias Hepáticas/patología , Transducción de Señal/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
8.
Commun Biol ; 7(1): 161, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332111

RESUMEN

Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Simulación del Acoplamiento Molecular , Raíces de Plantas/metabolismo
9.
Nano Lett ; 24(7): 2210-2217, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38320301

RESUMEN

The Z4 symmetry indicator is widely used to classify topological materials hosting inversion symmetry. We find orthorhombic Li2AuBi in space group Cmcm is a topological insulator with Z4=1 under no strain via first-principles calculations. Due to small band gaps in the kz = 0 plane, the band inversions can be selectively induced by moderate external strains to realize phases covering all values of Z4 = 1, 2, 3, and 0. Detailed Z4 phase diagrams are plotted under various moderate strains. The (001) surface states and their associated Fermi surfaces and spin textures are calculated. The topological surface states have different connectivities and different spin textures for the four different Z4 phases. The tunability of topological surface states via moderate strain suggests Li2AuBi as an attractive topological material for device applications.

10.
Org Lett ; 26(2): 493-497, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38191300

RESUMEN

An electrochemical hydrogen atom transfer (HAT) strategy for the direct amino-α-C-H heteroarylation of amides is described. The cheap TMSN3 acts as a hydrogen atom transfer reagent. A series of heteroarenes including quinoxalin-2(1H)-ones, 4-methylquinoline, isoquinoline, 2-methylquinoxaline, benzothiazole, etc., and various readily available amides/lactams were suitable. The reaction has the characteristics of a wide range of substrates, good regioselectivity, chemical oxidant-free conditions, etc.

11.
Biochem Biophys Res Commun ; 692: 149323, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043154

RESUMEN

Osteoporosis is a metabolic bone loss disorder usually accompanied by overactivated osteoclast formation and increased bone resorption. Transcriptional co-activator with PDZ-binding motif (TAZ) is an emerging potential target for the treatment of osteoporosis. Our previous research showed that TAZ overexpression inhibited osteoclast formation while TAZ silencing had the opposite effect. In addition, TAZ knockout in mouse osteoclasts induced osteoporosis in animal experiments. XMU-MP-1 (XMU) is a selective MST1/2 inhibitor that can theoretically activate TAZ; however, its effect on osteoporosis remains unknown. In this study, we found that XMU treatment significantly increased TAZ expression in osteoclasts and inhibited osteoclast formation in vitro; however, this inhibitory effect was eliminated after the deletion of TAZ. Furthermore, XMU treatment upregulated TAZ expression in osteoclasts and alleviated ovariectomy (OVX)-induced osteoporosis in bilateral OVX mouse models. These findings suggest that XMU can effectively activate TAZ and that pharmacological activation of TAZ may be a promising option for the treatment of osteoporosis.


Asunto(s)
Osteogénesis , Osteoporosis , Ratones , Animales , Femenino , Humanos , Hueso Esponjoso , Osteoporosis/etiología , Osteoporosis/inducido químicamente , Factores de Transcripción/genética , Factores de Transcripción/farmacología , Ovariectomía
12.
Biochem Pharmacol ; 219: 115964, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049011

RESUMEN

Excessive osteoclast activation is a leading cause of osteoporosis. Therefore, identifying molecular targets and relevant pharmaceuticals that inhibit osteoclastogenesis is of substantial clinical importance. Prior research has indicated that transcriptional coactivator with PDZ-binding motif (TAZ) impedes the process of osteoclastogenesis by engaging the nuclear factor (NF)-κB signaling pathway, thereby suggesting TAZ activation as a potential therapeutic approach to treat osteoporosis. (R)-PFI-2 is a novel selective inhibitor of SETD7 methyltransferase activity, which prevents the nuclear translocation of YAP, a homolog of TAZ. Therefore, we hypothesized that (R)-PFI-2 could be an effective therapeutic agent in the treatment of osteoporosis. To test this hypothesis and explore the underlying mechanism, we first examined the impact of (R)-PFI-2 on osteoclastogenesis in bone marrow macrophages (BMMs) in vitro. (R)-PFI-2 treatment inhibited TAZ phosphorylation induced by NF-κB, thereby enhancing its nuclear localization, protein expression, and activation in BMMs. Moreover, (R)-PFI-2-induced TAZ activation inhibited osteoclast formation in a dose-dependent manner, which involved inhibition of osteoclastogenesis through the TAZ and downstream NF-κB pathways. Furthermore, (R)-PFI-2 inhibited osteoclastogenesis and prevented ovariectomy-induced bone loss in vivo in a mouse model. Overall, our findings suggest that TAZ activation by (R)-PFI-2 inhibits osteoclastogenesis and prevents osteoporosis, indicating an effective strategy for treating osteoclast-induced osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Ratones , Femenino , Humanos , Osteogénesis , FN-kappa B/metabolismo , Resorción Ósea/prevención & control , Osteoclastos , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Ligando RANK/farmacología , Ovariectomía , Diferenciación Celular , N-Metiltransferasa de Histona-Lisina
13.
Free Radic Biol Med ; 210: 130-145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984751

RESUMEN

Acute pancreatitis (AP) is a non-infectious pancreatic enzyme-induced disorder, a life-threatening inflammatory condition that can cause multi-organ dysfunction, characterized by high morbidity and mortality. Several therapies have been employed to target this disorder; however, few happen to be effectively employable even in the early phase. PFKFB3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) is a critical regulator of glycolysis and is upregulated under inflammatory, mitogenic, and hypoxia conditions. Essential information on the targeting of the inflammatory pathway will present the termination of the disorder and recovery. Herein we investigated the protective function of KAN0438757, a potent inhibitor of PFKFB3, and its mechanism of impeding AP induced in mice. KAN0438757 was confirmed to activate the Nrf2/HO-1 inflammatory signaling pathways in response to caerulein induced acute pancreatitis (CAE-AP) and fatty acid ethyl ester induced severe acute pancreatitis (FAEE-SAP). Additionally, KAN0438757 alleviated the inflammatory process in infiltrated macrophage via the Nrf2/HO-1 inflammatory signaling pathway and demonstrated a significant effect on the growth of mice with induced AP. And more importantly, KAN0438757 displayed negligible toxicity in vivo. Taken together our data suggest KAN0438757 directly suppresses the inflammatory role of PFKFB3 and induces a protective role via the Nrf2/HO-1 pathway, which could prove as an excellent therapeutic platform for SAP amelioration.


Asunto(s)
Pancreatitis , Ratones , Animales , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad Aguda , Transducción de Señal , Macrófagos/metabolismo
14.
Clin Pharmacokinet ; 63(1): 79-91, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971650

RESUMEN

BACKGROUND AND OBJECTIVE: The latest vancomycin guideline recommends area under the curve (AUC)-targeted dosing and monitoring for efficacy and safety. However, guidelines for AUC-targeted starting dosing in patients with obesity and/or renal insufficiency are currently lacking. This study quantifies the pharmacokinetics (PK) of vancomycin in this population and provides AUC-targeted dosing recommendations. METHODS: Vancomycin concentrations (n = 1188) from therapeutic drug monitoring of 210 overweight and obese patients with varying degrees of renal (dys)function from the ward (74.8%) and intensive care unit (ICU, 25.2%) were pooled with published rich concentration-time data (n = 207) from 20 (morbidly) obese subjects undergoing bariatric surgery. A population model was developed using NONMEM 7.4. Stochastic simulations were performed to design dosing guidelines targeting an AUC24 between 400-600 mg·h/L. RESULTS: Vancomycin clearance (CL) was found to increase linearly with total bodyweight and with renal function (CKD-EPI) in a power relation. Additionally, CL proved 15.5% lower in ICU patients. Our model shows that, to reach the target AUC between 400 and 600 mg·h/L in the first 48 h, two loading doses are required for both continuous infusion and intermittent dosing regimens. Maintenance doses were found to require adjustment for total bodyweight, renal function, and ICU admission status. With this guideline, the median AUC24 is well within the target from the start of the treatment onwards. CONCLUSIONS: To achieve safe and effective vancomycin exposure for maintenance doses in overweight and obese patients, renal function, total bodyweight, and ICU admission status should be taken into account. TRIAL REGISTRATION: The AMIGO trial was registered in the Dutch Trial Registry [NTR6058].


Asunto(s)
Antibacterianos , Vancomicina , Humanos , Antibacterianos/farmacocinética , Área Bajo la Curva , Riñón , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Sobrepeso/complicaciones , Sobrepeso/tratamiento farmacológico , Vancomicina/farmacocinética
15.
Adv Mater ; 36(14): e2309302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145558

RESUMEN

The inability to process many covalent organic frameworks (COFs) as thin films plagues their widespread utilization. Herein, a vapor-phase pathway for the bottom-up synthesis of a class of porphyrin-based COFs is presented. This approach allows integrating electrocatalysts made of metal-ion-containing COFs into the electrodes' architectures in a single-step synthesis and deposition. By precisely controlling the metal sites at the atomic level, remarkable electrocatalytic performance is achieved, resulting in unprecedentedly high mass activity values. How the choice of metal atoms, i.e., cobalt and copper, can determine the catalytic activities of POR-COFs is demonstrated. The theoretical data proves that the Cu site is highly active for nitrate conversion to ammonia on the synthesized COFs.

16.
Polymers (Basel) ; 15(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896325

RESUMEN

Homopolymers of n-butyl acrylate, methyl methacrylate, styrene, and their random copolymers were prepared via interface-initiated polymerization of emulsion gels at 20 °C. The polymerization was conducted in a free radical polymerization manner without inert gas protection. Compared with the polymers synthesized at 60 °C, the polymerization of emulsion gels at 20 °C produced homo- and copolymers with a higher molecular mass and a narrower molecular mass distribution. The polydispersity indices for the polymers synthesized at 20 °C were found to be between 1.12 and 1.37. The glass transition temperatures for the as-synthesized butyl acrylate copolymers agree well with the prediction from the Gordon-Taylor equation. Interface-initiated room-temperature polymerization is a robust, energy-saving polymerization technique for synthesizing polymers with a narrow molecular mass distribution.

17.
J Mol Histol ; 54(6): 543-557, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37874501

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético , Ejercicio Físico
18.
Planta ; 258(3): 68, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598130

RESUMEN

MAIN CONCLUSION: We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Fertilidad/genética , Ácidos Indolacéticos , Reproducción
19.
Otolaryngol Head Neck Surg ; 169(6): 1533-1541, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37418217

RESUMEN

OBJECTIVE: To define novel gene biomarkers for prognosis of head and neck squamous cell carcinoma (HNSCC) patients' survival. STUDY DESIGN: Retrospective study. SETTING: The Cancer Genome Atlas (TCGA) HNSCC RNA-Seq dataset. METHODS: Coexpressed gene clusters were extracted from TCGA RNA-seq data using our previously published method (EPIG). Kaplan-Meier estimator was then used for overall survival-relevant analysis, with patients partitioned into 3 groups based on gene expression levels: female, male_low, and male_high. RESULTS: Male had better overall survival than female and male with higher expression level of Y-chromosome-linked (Y-linked) genes had significantly better survival than those with lower expression levels. In addition, male with a higher expression level of Y-linked genes showed even better survival when they have a higher level of coexpressed cluster of genes related to B or T cell immune response. Other clinical conditions related to immune responses also consistently showed favorable effects on the Y-linked genes for survival estimation. Male patients with higher expression level of Y-linked genes also have significantly higher tumor/normal tissue (T/N) ratio of those genes and higher level of several immune responses related clinical measurements (eg, lymphocyte and TCR related). Male patients with lower expression level of Y-linked genes benefited from radiation-only treatment. CONCLUSIONS: The favorable role of a cluster of coexpressed Y-linked genes in HNSCC patients' survival is potentially associated with elevated level of immune responses. These Y-linked genes could serve as useful prognostic biomarkers for HNSCC patients' survival estimation and treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Masculino , Femenino , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/genética , Genes Ligados a Y , Estudios Retrospectivos , Pronóstico , Cromosomas , Biomarcadores , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica
20.
Nano Lett ; 23(15): 6907-6913, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494570

RESUMEN

Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, the film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in biosensing, heat transfer, and the enhancement of spontaneous emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...