Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1282083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107008

RESUMEN

Introduction: Sugarcane/soybean intercropping with reduced nitrogen (N) addition has improved soil fertility and sustainable agricultural development in China. However, the effects of intercropping pattern and N fertilizer addition on the allocation of photosynthesized carbon (C) in plant-soil system were far less understood. Methods: In this study, we performed an 13CO2 pulse labeling experiment to trace C footprints in plant-soil system under different cropping patterns [sugarcane monoculture (MS), sugarcane/soybean intercropping (SB)] and N addition levels [reduced N addition (N1) and conventional N addition (N2)]. Results and discussion: Our results showed that compared to sugarcane monoculture, sugarcane/soybean intercropping with N reduced addition increased sugarcane biomass and root/shoot ratio, which in turn led to 23.48% increase in total root biomass. The higher root biomass facilitated the flow of shoot fixed 13C to the soil in the form of rhizodeposits. More than 40% of the retained 13C in the soil was incorporated into the labile C pool [microbial biomass C (MBC) and dissolved organic C (DOC)] on day 1 after labeling. On day 27 after labeling, sugarcane/soybean intercropping with N reduced addition showed the highest 13C content in the MBC as well as in the soil, 1.89 and 1.14 times higher than the sugarcane monoculture, respectively. Moreover, intercropping pattern increased the content of labile C and labile N (alkaline N, ammonium N and nitrate N) in the soil. The structural equation model indicated that the cropping pattern regulated 13C sequestration in the soil mainly by driving changes in labile C, labile N content and root biomass in the soil. Our findings demonstrate that sugarcane/soybean intercropping with reduced N addition increases photosynthesized C sequestration in the soil, enhances the C sink capacity of agroecosystems.

2.
Sensors (Basel) ; 23(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37177657

RESUMEN

Dry electroencephalogram (EEG) systems have a short set-up time and require limited skin preparation. However, they tend to require strong electrode-to-skin contact. In this study, dry EEG electrodes with low contact impedance (<150 kΩ) were fabricated by partially embedding a polyimide flexible printed circuit board (FPCB) in polydimethylsiloxane and then casting them in a sensor mold with six symmetrical legs or bumps. Silver-silver chloride paste was used at the exposed tip of each leg or bump that must touch the skin. The use of an FPCB enabled the fabricated electrodes to maintain steady impedance. Two types of dry electrodes were fabricated: flat-disk electrodes for skin with limited hair and multilegged electrodes for common use and for areas with thick hair. Impedance testing was conducted with and without a custom head cap according to the standard 10-20 electrode arrangement. The experimental results indicated that the fabricated electrodes exhibited impedance values between 65 and 120 kΩ. The brain wave patterns acquired with these electrodes were comparable to those acquired using conventional wet electrodes. The fabricated EEG electrodes passed the primary skin irritation tests based on the ISO 10993-10:2010 protocol and the cytotoxicity tests based on the ISO 10993-5:2009 protocol.


Asunto(s)
Electroencefalografía , Piel , Impedancia Eléctrica , Electroencefalografía/métodos , Electrodos , Tacto
3.
ACS Sens ; 7(8): 2345-2357, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35943904

RESUMEN

NDIR CO2 gas sensors using a 10-cm-long gas channel and CMOS-compatible 12% doped ScAlN pyroelectric detector have previously demonstrated detection limits down to 25 ppm and fast response time of ∼2 s. Here, we increase the doping concentration of Sc to 20% in our ScAlN-based pyroelectric detector and miniaturize the gas channel by ∼65× volume with length reduction from 10 to 4 cm and diameter reduction from 5 to 1 mm. The CMOS-compatible 20% ScAlN-based pyroelectric detectors are fabricated over 8-in. wafers, allowing cost reduction leveraging on semiconductor manufacturing. Cross-sectional TEM images show the presence of abnormally oriented grains in the 20% ScAlN sensing layer in the pyroelectric detector stack. Optically, the absorption spectrum of the pyroelectric detector stack across the mid-infrared wavelength region shows ∼50% absorption at the CO2 absorption wavelength of 4.26 µm. The pyroelectric coefficient of these 20% ScAlN with abnormally oriented grains shows, in general, a higher value compared to that for 12% ScAlN. While keeping the temperature variation constant at 2 °C, we note that the pyroelectric coefficient seems to increase with background temperature. CO2 gas responses are measured for 20% ScAlN-based pyroelectric detectors in both 10-cm-long and 4-cm-long gas channels, respectively. The results show that for the miniaturized CO2 gas sensor, we are able to measure the gas response from 5000 ppm down to 100 ppm of CO2 gas concentration with CO2 gas response time of ∼5 s, sufficient for practical applications as the average outdoor CO2 level is ∼400 ppm. The selectivity of this miniaturized CO2 gas sensor is also tested by mixing CO2 with nitrogen and 49% sulfur hexafluoride, respectively. The results show high selectivity to CO2 with nitrogen and 49% sulfur hexafluoride each causing a minimum ∼0.39% and ∼0.36% signal voltage change, respectively. These results bring promise to compact and miniature low cost CO2 gas sensors based on pyroelectric detectors, which could possibly be integrated with consumer electronics for real-time air quality monitoring.

4.
Sci Rep ; 10(1): 13971, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811903

RESUMEN

Proline is one of the precursors of the biosynthesis of 2-acetyl-1-pyrroline (2-AP) which is the key and characteristic volatile component of fragrant rice aroma. In order to study the effects of exogenous proline on 2-AP biosynthesis and other grain quality attributes in fragrant rice, two indica fragrant rice cultivars, "Meixiangzhan-2" and "Xiangyaxiangzhan", and one japonica fragrant rice, "Yunjingyou", were used in present study. At initial heading stage, proline solutions at 0 (CK), 0.10 (Pro1), 0.20 (Pro2) and 0.50 (Pro3) g L-1 were applied as foliar spray solution to fragrant rice plants. Compared with CK, Pro1, Pro2 and Pro3 treatments significantly increased the grain 2-AP content. The significant up-regulation effects due to proline treatments were observed in the contents of proline, △1-pyrrolidine-5-carboxylic acid (P5C) and △1-pyrroline which involved in 2-AP formation. Exogenous proline application also significantly decreased the grain γ-aminobutyric acid (GABA) content. Furthermore, proline treatments enhanced the activity of proline dehydrogenase (ProDH) as well as transcript level of gene PRODH. On the other hand, the transcript level of gene BADH2 and activity of betaine aldehyde dehydrogenase (BADH) decreased under proline treatments. Proline treatments (Pro2 and Pro3) also increased the grain protein content by 3.57-6.51%. Moreover, 32.03-34.25% lower chalky rice rate and 30.80-48.88% lower chalkiness were recorded in proline treatments (Pro2 and Pro3) for both Meixiangzhan and Xiangyaxiangzhan whilst for Yunjingyou, foliar application of proline had no significant effect on chalky rice rate and chalkiness. There was no remarkable difference observed in grain milled quality (brown rice rate, milled rice rate and head rice rate) and amylose content between CK and proline treatments. In conclusion, exogenous proline enhanced the 2-AP biosynthesis and promoted some grain quality characters of fragrant rice.


Asunto(s)
Oryza/genética , Prolina/metabolismo , Pirroles/metabolismo , China , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Prolina Oxidasa/genética
5.
Sci Rep ; 10(1): 8326, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433497

RESUMEN

Zero-tillage is one of conservation tillage techniques. In order to investigate the effects of continuous zero-tillage on yield formation and grain 2-acetyl-1-pyrroline (2-AP, key component of fragrant rice aroma) content of fragrant rice, present study was conducted with a six-season field experiment from 2017 to 2019. The conventional tillage (twice puddling with rotary cultivator before transplanting) was set as control (CK) and zero-tillage was set as treatment (ZT). At the first year after applying zero-tillage, yield loss was observed in the ZT treatment which was attributed to the lower effective panicle number per area and grain number per panicle. However, from late season in 2018 to late season in 2019, significant higher grain yield was recorded in ZT than CK. ZT increased the net photosynthetic rate and chlorophyll content (SPAD value) by 6.81-20.77% and 7.23-23.80% in the last three cropping seasons compared with CK. Higher nitrogen, potassium and phosphorus accumulations in plant tissues were also recorded in ZT than CK from late season in 2018 to late season in 2019. Other hand, higher grain 2-AP content was recorded in ZT than CT in the whole six cropping seasons which might be related to the grain proline content. Furthermore, compared with CK, ZT significantly increased the soil organic matter content and the number of bacteria, fungi and actinomycetes in the last three cropping seasons. In conclusion, continuous zero-tillage could improve soil and increase the photosynthesis and nutrient accumulation and finally achieve the improvement of fragrant rice yield.

6.
IEEE J Biomed Health Inform ; 19(3): 986-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25222961

RESUMEN

This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.


Asunto(s)
Seguridad Computacional , Compresión de Datos/métodos , Electrocardiografía/métodos , Telemedicina , Confidencialidad , Análisis de Fourier , Humanos , Informática Médica
7.
IEEE Trans Biomed Circuits Syst ; 7(5): 690-702, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24232630

RESUMEN

Most biopotential readout front-ends rely on the g m- C lowpass filter (LPF) for forefront signal conditioning. A small g m realizes a large time constant ( τ = C / g m) suitable for ultra-low-cutoff filtering, saving both power and area. Yet, the noise and linearity can be compromised, given that each g m cell can involve one or several noisy and nonlinear V- I conversions originated from the active devices. This paper proposes the subthreshold-source-follower (SSF) Biquad as a prospective alternative. It features: 1) a very small number of active devices reducing the noise and nonlinearity footsteps; 2) No explicit feedback in differential implementation, and 3) extension of filter order by cascading. This paper presents an in-depth treatment of SSF Biquad in the nW-power regime, analyzing its power and area tradeoffs with gain, linearity and noise. A gain-compensation (GC) scheme addressing the gain-loss problem of NMOS-based SSF Biquad due to the body effect is also proposed. Two 100-Hz 4th-order Butterworth LPFs using the SSF Biquads with and without GC were fabricated in 0.35- µm CMOS. Measurement results show that the non-GC (GC) LPF can achieve a DC gain of -3.7 dB (0 dB), an input-referred noise of 36 µV rms (29 µV rms ), a HD3@60 Hz of -55.2 dB ( - 60.7 dB) and a die size of 0.11 mm² (0.08 mm²). Both LPFs draw 15 nW at 3 V. The achieved figure-of-merits (FoMs) are favorably comparable with the state-of-the-art.


Asunto(s)
Amplificadores Electrónicos , Tecnología Biomédica/instrumentación , Diseño de Equipo/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación
8.
Artículo en Inglés | MEDLINE | ID: mdl-22254692

RESUMEN

This paper describes an ultra-low-power filtering technique for biomedical applications designated as T-wave sensing in heart-activities detection systems. The topology is based on a source-follower-based Biquad operating in the sub-threshold region. With the intrinsic advantages of simplicity and high linearity of the source-follower, ultra-low-cutoff filtering can be achieved, simultaneously with ultra low power and good linearity. An 8(th)-order 2.4-Hz lowpass filter design example optimized in a 0.35-µm CMOS process was designed achieving over 85-dB dynamic range, 74-dB stopband attenuation and consuming only 0.36 nW at a 3-V supply.


Asunto(s)
Amplificadores Electrónicos , Suministros de Energía Eléctrica , Electrocardiografía/instrumentación , Electrónica/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...