Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400376, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801007

RESUMEN

Ammonia borane (AB) has emerged as a promising chemical hydrogen storage material. The development of efficient, stable, and cost-effective catalysts for AB hydrolysis is the key to achieving hydrogen energy economy. Here, cobalt phosphide (CoP) is used to anchor single-atom Pt species, acting as robust catalysts for hydrogen generation from AB hydrolysis. Thanks to the high Pt utilization and the synergy between CoP and Pt species, the optimized Pt/CoP-100 catalyst exhibits an unprecedented hydrogen generation rate, giving a record turnover frequency (TOF) value of 39911 mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ and turnover number of 2926829 mo l H 2 mo l Pt - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}$ at room temperature. These metrics surpass those of all existing state-of-the-art supported metal catalysts by an order of magnitude. Density functional theory calculations reveal that the integration of single-atom Pt onto the CoP substrate significantly enhances adsorption and dissociation processes for both water and AB molecules, thereby facilitating hydrogen production from AB hydrolysis. Interestingly, the TOF value is further elevated to 54878 mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ under UV-vis light irradiation, which can be attributed to the efficient separation and mobility of photogenerated carriers at the Pt-CoP interface. The findings underscore the effectiveness of CoP as a support for single-atom metals in hydrogen production, offering insights for designing high-performance catalysts for chemical hydrogen storage.

2.
Angew Chem Int Ed Engl ; : e202407092, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773811

RESUMEN

Covalent organic framework (COF) has attracted increasing interest in photocatalytic CO2 reduction, but it remains a challenge to achieve high conversion efficiency owing to the insufficient active site and fast charge recombination. Rationally optimizing the electronic structures of COF to regulate the local charge of active sites precisely is the key point to improving catalytic performance. Herein, intercalated single Co sites coordinated by imine-N motifs have been designed by using trinuclear copper-based imine-COFs with distinct electronic moieties via a molecular engineering strategy. It is confirmed that the charge delivery property and local charge distribution of these heterometallic frameworks can be profoundly influenced by electronic structures. Among these featured structures with mixed-state copper clusters, Co/Cu3-TPA-COF stands out for an exceptional photocatalytic CO2 reduction activity and tunable syngas (CO/H2) ratio by changing various bipyridines. Experimental and theoretical results indicate that interlayer Co-imine N motifs on the donor1-acceptor-donor2 structures facilitate the formation of a highly separated electron-hole state, which effectively induces the oriented electron transfer from dual electron donors to Co centers, achieving an enhanced CO2 activation and reduction. This work opens up an avenue for the design of high-performance COF-based catalysts for photocatalytic CO2 reduction.

3.
Int J Cardiol ; 408: 132149, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723908

RESUMEN

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.

4.
J Am Chem Soc ; 146(13): 8939-8948, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526452

RESUMEN

Propane dehydrogenation (PDH) reaction has emerged as one of the most promising propylene production routes due to its high selectivity for propylene and good economic benefits. However, the commercial PDH processes usually rely on expensive platinum-based and poisonous chromium oxide based catalysts. The exploration of cost-effective and ecofriendly PDH catalysts with excellent catalytic activity, propylene selectivity, and stability is of great significance yet remains challenging. Here, we discovered a new active center, i.e., an unsaturated tricoordinated cobalt unit (≡Si-O)CoO(O-Mo) in a molybdenum-doped silicalite-1 zeolite, which afforded an unprecedentedly high propylene formation rate of 22.6 molC3H6 gCo-1 h-1 and apparent rate coefficient of 130 molC3H6 gCo-1 h-1 bar-1 with >99% of propylene selectivity at 550 °C. Such activity is nearly one magnitude higher than that of previously reported Co-based catalysts in which cobalt atoms are commonly tetracoordinated, and even superior to that of most of Pt-based catalysts under similar operating conditions. Density functional theory calculations combined with the state-of-the-art characterizations unravel the role of the unsaturated tricoordinated Co unit in facilitating the C-H bond-breaking of propane and propylene desorption. The present work opens new opportunities for future large-scale industrial PDH production based on inexpensive non-noble metal catalysts.

5.
Angew Chem Int Ed Engl ; 63(15): e202319996, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38316641

RESUMEN

Metal halide perovskites (MHPs), renowned for their outstanding optoelectronic properties, hold significant promise as photocatalysts for hydrogen evolution reaction (HER). However, the low stability and insufficient exposure of catalytically active sites of bulky MHPs seriously impair their catalytic efficiency. Herein, we utilized an extra-large-pore zeolite ZEO-1 (JZO) as a host to confine and stabilize the CsPbBr3 nanocrystals (3.4 nm) for boosting hydrogen iodide (HI) splitting. The as-prepared CsPbBr3@ZEO-1 featured sufficiently exposed active sites, superior stability in acidic media, along with intrinsic extra-large pores of ZEO-1 that were favorable for molecule/ion adsorption and diffusion. Most importantly, the unique nanoconfinement effect of ZEO-1 led to the narrowing of the band gap of CsPbBr3, allowing for more efficient light utilization. As a result, the photocatalytic HER rate of the as-prepared CsPbBr3@ZEO-1 photocatalyst was increased to 1734 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3) under visible light irradiation compared with bulk CsPbBr3 (11 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), and the long-term durability (36 h) can be achieved. Furthermore, Pt was incorporated with well-dispersed CsPbBr3 nanocrystals into ZEO-1, resulting in a significant enhancement in activity (4826 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), surpassing most of the Pt-integrated perovskite-based photocatalysts. Density functional theory (DFT) calculations and charge-carrier dynamics investigation revealed that the dramatically boosted photocatalytic performance of Pt/CsPbBr3@ZEO-1 could be attributed to the promotion of charge separation and transfer, as well as to the substantially lowered energy barrier for HER. This work highlights the advantage of extra-large-pore zeolites as the nanoscale platform to accommodate multiple photoactive components, opening up promising prospects in the design and exploitation of novel zeolite-confined photocatalysts for energy harvesting and storage.

6.
PLoS One ; 19(2): e0297753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335229

RESUMEN

CO2 blasting has been identified as a potent method for enhancing the permeability of coal seams and improving gas drainage efficiency. This study is focused on elucidating the deformation and fracture mechanisms of coal and rock during CO2 blasting and on identifying the precursor characteristics of these processes. To this end, a CO2 blasting-induced coal rock fracture pressure model and a gas pressure distribution model were developed. The research utilized a self-developed CO2 blasting test platform along with a non-contact full-strain field measurement analysis system. Briquette samples were subjected to CO2 blasting tests under controlled experimental conditions, which included an axial pressure of 1.0 MPa and variable gas pressures of 0.5, 1.0, and 1.5 MPa. This methodology enabled the capture of the principal strain field on the surface of the samples. The Gray Level Co-occurrence Matrix (GLCM) was employed to extract and analyze the grayscale and texture features of the strain cloud maps, facilitating a quantitative assessment of their evolution. The aim was to pinpoint the precursor characteristics associated with coal rock cracking and crack propagation. The results revealed that: (1) During the cracking and subsequent propagation of samples, the strain field's grayscale histogram underwent a transformation from a "broad and low" to a "narrow and high" configuration, with a consistent increase in peak frequency. Specifically, at 3 ms, a primary crack was observed in the sample, evidenced by a grayscale peak frequency of 0.0846. By 9 ms, as the crack propagated, the grayscale peak frequency escalated to 0.1626. (2) The texture feature parameters experienced their initial abrupt change at 3ms. Correlation with the gas pressure distribution model indicated that this was the crack initiation moment in the sample. (3) A secondary abrupt shift in the texture feature parameters occurred at 9ms, in conjunction with experimental phenomena, was identified as the crack propagation phase. Monitoring the grayscale and texture features of the principal strain field on the coal rock surface proved effective in recognizing the precursor characteristics of crack initiation and propagation. This research has the potential to reduce blasting costs in coal mines, optimize blasting effects, and provided theoretical guidance for enhancing gas extraction efficiency from deep and low permeability coal seams.


Asunto(s)
Dióxido de Carbono , Minas de Carbón , Dióxido de Carbono/análisis , Carbón Mineral/análisis , Minas de Carbón/métodos , Permeabilidad
7.
Chem Sci ; 15(1): 379-388, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131096

RESUMEN

Atomically dispersed metal catalysts with excellent activity and stability are highly desired in heterogeneous catalysis. Herein, we synthesized zeolite-encaged Pd-based pseudo-single atoms via a facile and energy-efficient ligand-protected direct H2 reduction method. Cs-corrected scanning transmission electron microscopy, extended X-ray absorption, and pair distribution function measurements reveal that the metal species are close to atomic-level dispersion and completely confined within the intersectional channels of silicalite-1 (S-1) zeolite with the MFI framework. The Pd@S-1-H exhibits excellent activity and stability in methane combustion reactions with a complete combustion temperature of 390 °C, and no deactivation is observed even after 100 h on stream. The optimized bimetallic 0.8Pd0.2Ni(OH)2@S-1-H catalyst exhibits an excellent H2 generation rate from FA decomposition without any additives, affording a superhigh turnover frequency up to 9308 h-1 at 333 K, which represents the top activity among all of the best heterogeneous catalysts under similar conditions. Significantly, zeolite-encaged metal catalysts are first used for Cr(vi) reduction coupled with formic acid (FA) dehydrogenation and show a superhigh turnover number of 2980 mol(Cr2O72-) mol(Pd)-1 at 323 K, surpassing all of the previously reported catalysts. This work demonstrates that zeolite-encaged pseudo-single atom catalysts are promising in efficient hydrogen storage and pollutant disposal applications.

8.
ACS Omega ; 8(50): 48304-48316, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144081

RESUMEN

The explosion characteristics of premixed gases under different equivalence ratios (1.0-3.0) and inert gas addition (5-20%) are experimentally investigated, and sensitivity analysis of the radical reactions is carried out using the USC Mech II model to analyze the molar fraction of radicals. The results show that at high equivalence ratios, inert gas has little effect on flame stability. The addition of an inert gas reduces the tensile rate in the early stage of flame growth. At high equivalence ratios, CO2 inhibits explosive flame propagation twice as effectively as N2. Due to the large heat capacity and chemical kinetic effects, CO2 has a stronger inhibitory effect on the explosion pressure than N2, and the inhibition efficiency on the explosion strength is nearly twice that high. To further analyze the effect of different inert gas addition ratios on chemical kinetics, sensitivity analysis, and molar fraction simulations were performed. The thermal and chemical kinetic effects of CO2 cause later generation of H and OH radicals and the partial chain reaction involving CO2 causes a lower peak of H radicals than the peak of H radicals generated under an N2 atmosphere. However, CO2 is a direct reactant and the third body to produce a small chemical kinetic effect.

9.
Angew Chem Int Ed Engl ; 62(48): e202313101, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37792288

RESUMEN

The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd-C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si-O-C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2 ), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.

10.
Int J Biol Macromol ; 244: 125207, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37276904

RESUMEN

In order to further improve the economic benefits of the coffee industry chain, we carried out the following systematic research on processing by-products. In this research, the obtained coffee cherry peel polysaccharide (CCP) which was removed from the coffee cherry peel by hot acid method had a galacturonic acid content of 20.50 % and a molecular weight of 3.05 kg/mol. According to the results of monosaccharide analysis, Fourier transform infrared spectroscopy, molecular weight distribution, and thermal analysis, CCP was a typical high methoxy polysaccharide. In vitro antioxidant results showed that CCP had better antioxidant capacity than commercial citrus polysaccharide (APC). When it came to emulsification performance, the water-oil bonding ability and disturbance resistance to the fluid of CCP were also significantly higher than that of APC. Specially, we found that 0.50 % (wt%) CCP could form a solid-liquid gel with very high plasticity at low oil phase fraction. In conclusion, the coffee cherry peel could be used as a natural source of a novel emulsifier, providing a promising alternative for polysaccharide in the food industry.


Asunto(s)
Antioxidantes , Café , Antioxidantes/farmacología , Antioxidantes/química , Café/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Monosacáridos
11.
Nat Commun ; 14(1): 3429, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301892

RESUMEN

Faithful inheritance of parental histones is essential to maintain epigenetic information and cellular identity during cell division. Parental histones are evenly deposited onto the replicating DNA of sister chromatids in a process dependent on the MCM2 subunit of DNA helicase. However, the impact of aberrant parental histone partition on human disease such as cancer is largely unknown. In this study, we construct a model of impaired histone inheritance by introducing MCM2-2A mutation (defective in parental histone binding) in MCF-7 breast cancer cells. The resulting impaired histone inheritance reprograms the histone modification landscapes of progeny cells, especially the repressive histone mark H3K27me3. Lower H3K27me3 levels derepress the expression of genes associated with development, cell proliferation, and epithelial to mesenchymal transition. These epigenetic changes confer fitness advantages to some newly emerged subclones and consequently promote tumor growth and metastasis after orthotopic implantation. In summary, our results indicate that impaired inheritance of parental histones can drive tumor progression.


Asunto(s)
Transición Epitelial-Mesenquimal , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Epigénesis Genética , ADN Helicasas/metabolismo , Código de Histonas
12.
PLoS One ; 18(5): e0285808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228123

RESUMEN

The ultrasonic characteristics of the coal and rock bodies around boreholes during failure are closely related to the crack propagation law. To investigate the ultrasonic characteristics and crack propagation law of coal and rock bodies around boreholes, different grouting samples with boreholes were taken to carry out ultrasonic test during progressive failure. The ultrasonic amplitude, velocity and attenuation coefficient of the samples were analyzed. According to the ultrasonic time difference formula, the equivalent crack width of the sample during the failure process is calculated. The influence of grouting material on the crack propagation law is quantitatively analyzed. The results show that: (1) The peak stress, elastic energy at the peak, ultrasonic parameters and crack propagation of the coal and rock bodies around boreholes show obvious differences influenced by the strength of the grouting material. (2) During the loading process, the arrival time of the first wave of the sample with holes is 5µs later than that of the grouting sample, and the ultrasonic energy attenuates fastest in the time domain, and the coda wave is not developed. (3) During the progressive failure, the ultrasonic velocity and attenuation coefficient of all show three stages of stability(0~0.6σp), slow change(0.6σp~0.8σp) and rapid change(0.8σp~1.0σp). According to the "sudden decrease" of velocity and the "sudden increase" of attenuation coefficient to judge the crack propagation of sample. (4) The equivalent crack width of the sample increases exponentially with the increase of stress level. At the time of reaching the peak stress, the equivalent crack width of SH-BH increases about 0.027mm~0.032mm, SH-PU about 0.01mm~0.014mm, and SH-CEM about 0.002mm~0.006mm.

13.
J Am Chem Soc ; 145(9): 5486-5495, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36820815

RESUMEN

Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.

14.
ACS Omega ; 8(4): 4176-4186, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743016

RESUMEN

To investigate the effect of preoxidation on the secondary spontaneous combustion of coal, the changes in the key groups and thermal characteristic parameters in coal after preoxidation were investigated through Fourier transform infrared spectroscopy (FTIR), laser thermal conductivity, and thermogravimetric experiments. Results showed that the aromatic hydrocarbons in coal gradually decrease with the rise in the preoxidation temperature, the aliphatic hydrocarbons increase and then decrease, the -C-O- group gradually decreases, and the -C=O and -COO- group content slowly increases. Preoxidation promotes the breakdown of aromatic hydrocarbons and the oxidation of oxygen-containing functional groups in coal. Meanwhile, the thermal diffusivity of coal decreases after preoxidation, while the specific heat capacity and thermal conductivity increase and then decrease. The results of the thermogravimetric analysis indicate that preoxidation changes the characteristic temperature, but it does not change the process of spontaneous combustion. The spontaneous combustion process of raw and preoxidized coals can be divided into three stages: water evaporation, oxygen adsorption, and combustion. Further, the apparent activation energy increases and then decreases with a rise in the preoxidation temperature during the moisture evaporation stage, increases during the oxygen adsorption stage, and decreases during the combustion stage.

15.
PLoS One ; 18(2): e0278783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36795760

RESUMEN

The creep process of the coal rock around the extraction boreholes under stress-water coupling is an important factor affecting the stability of the boreholes. To study the influence of the water content of perimeter of the coal rock around the boreholes on its creep damage, a creep intrinsic model considering water damage was established by introducing the plastic element model from the Nishihara model. To study the steady-state strain and damage evolution of coal rocks containing pores, and verify the practicality of the model, a graded loading water-bearing creep test was designed to explore the role of different water-bearing conditions in the creep process. The following conclusions were obtained: 1) water has a physical erosion and softening water wedge effect on the perimeter of the coal rock around the boreholes, which affects the loading axial strain and displacement of the perforated specimens; 2) an increase in water content reduces the time taken for perforated specimens to enter the creep phase, making the accelerated creep phase come earlier; 3) the parameters of the water damage model are considered to be exponentially related with the water content. The experimental data are similar to the results of the model parameters, and the model shows some practicality; 4) the damage variables in the accelerated creep phase increase rapidly throughout the creep process, leading to local instability in the borehole. The findings of the study provide important theoretical implications for the study of instability in gas extraction boreholes.


Asunto(s)
Carbón Mineral , Tardigrada , Animales , Examen Físico , Plásticos , Agua
16.
IEEE Trans Image Process ; 31: 6562-6576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36240038

RESUMEN

Nowadays, visual SLAM (Simultaneous Localization And Mapping) has become a hot research topic due to its low costs and wide application scopes. Traditional visual SLAM frameworks are usually designed for single-agent systems, completing both the localization and the mapping with sensors equipped on a single robot or a mobile device. However, the mobility and work capacity of the single agent are usually limited. In reality, robots or mobile devices sometimes may be deployed in the form of clusters, such as drone formations, wearable motion capture systems, and so on. As far as we know, existing SLAM systems designed for multi-agents are still sporadic, and most of them have non-negligible limitations in functions. Specifically, on one hand, most of the existing multi-agent SLAM systems can only extract some key features and build sparse maps. On the other hand, schemes that can reconstruct the environment densely cannot get rid of the dependence on depth sensors, such as RGBD cameras or LiDARs. Systems that can yield high-density maps just with monocular camera suites are temporarily lacking. As an attempt to fill in the research gap to some extent, we design a novel collaborative SLAM system, namely CVIDS (Collaborative Visual-Inertial Dense SLAM), which follows a centralized and loosely coupled framework and can be integrated with any existing Visual-Inertial Odometry (VIO) to accomplish the co-localization and the dense reconstruction. Integrating our proposed robust loop closure detection module and two-stage pose-graph optimization pipeline, the co-localization module of CVIDS can estimate the poses of different agents in a unified coordinate system efficiently from the packed images and local poses sent by the client-ends of different agents. Besides, our motion-based dense mapping module can effectively recover the 3D structures of selected keyframes and then fuse their depth information to the global map for reconstruction. The superior performance of CVIDS is corroborated by both quantitative and qualitative experimental results. To make our results reproducible, the source code has been released at https://cslinzhang.github.io/CVIDS.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36294188

RESUMEN

Water infiltration in boreholes is a common problem in mine gas pre-extraction, where water infiltration can significantly reduce the efficiency of gas extraction and curtail the life cycle of the borehole. It is important to evaluate the effect of groundwater on the permeability of the coal body around a gas extraction borehole. In order to determine the seepage parameters of the fractured coal body system around the borehole, a water-gas two-phase seepage test was designed to determine the relative seepage parameters of the fractured coal media seepage system. The main conclusion is that the relative permeability of gas can be effectively increased by increasing the negative extraction pressure at the early stage of extraction to accelerate drainage to reduce the water saturation of the coal seam. Under the combined effect of porosity and seepage pressure, the relative permeability of gas and water in the fractured coal rock body shows three stages. The dependence of the total permeability on the effective stress is closely related to the stages in the evolution of the pore structure, and the total effective permeability decreases with the increase in the effective stress. A decrease in porosity can lead to a decrease in permeability and an increase in the non-Darcy factor. Through an in-depth analysis of the damage and permeability pattern of the coal body around the perimeter of the dipping borehole, the efficient and safe extraction of gas from dipping boreholes in water-rich mines is thus ensured.


Asunto(s)
Carbón Mineral , Agua Subterránea , Carbón Mineral/análisis , Porosidad , Agua/análisis , Permeabilidad
18.
Natl Sci Rev ; 9(9): nwac094, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36128458

RESUMEN

Silicoaluminophosphate (SAPO) zeolites are well-known catalytic materials because of the mild acidity originating from the isolated SiO4 tetrahedra in their frameworks. Regulating the distribution of isolated SiO4 tetrahedra in SAPO zeolites is formidably challenging because SiO4 tetrahedra tend to agglomerate to form Si islands and the isolated SiO4 tetrahedra are difficult to determine using conventional characterization techniques. Here we synthesized Si-island-free SAPO-35 zeolites by using N-methylpiperidine as a new template, which exhibited excellent thermal stability compared to conventional SAPO-35 zeolites and a substantially improved methanol-to-olefins catalytic lifetime even comparable to that of commercial SAPO-34 zeolites. More strikingly, with the aid of high-throughput computations on 44 697 structure models combined with various state-of-the-art characterization techniques, for the first time, we reveal that the host-guest interactions between template molecules and SAPO frameworks determine the specific distributions of isolated SiO4 tetrahedra, which are responsible for the improvement in the chemical properties of zeolites. Our work provides an insight into the template-based regulation of isolated SiO4 tetrahedra in SAPO zeolites, which opens a new avenue in the discovery of promising zeolite catalysts with optimal SiO4 distribution.

19.
Sci Rep ; 12(1): 16081, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167893

RESUMEN

Borehole extraction is the basic method used for control of gases in coal mines. The quality of borehole sealing determines the effectiveness of gas extraction, and many influential factors result in different types of borehole leaks. To accurately identify the types of leaks from boreholes, characteristic parameters, such as gas concentration, flow rate and negative pressure, were selected, and new indexes were established to identify leaks. A model based on an improved naive Bayes framework was constructed for the first time in this study, and it was applied to analyse and identify boreholes in the 229 working face of the Xiashijie Coal Mine. Eight features related to single hole sealing sections were taken as parameters, and 144 training samples from 18 groups of real-time monitoring time series data and 96 test samples from 12 groups were selected to verify the accuracy and speed of the model. The results showed that the model eliminated strong correlations between the original characteristic parameters, and it successfully identified the leakage conditions and categories of 12 boreholes. The identification rate of the new model was 98.9%, and its response time was 0.0020 s. Compared with the single naive Bayes algorithm model, the identification rate was 31.8% better, and performance was 55% faster. The model developed in this study fills a gap in the use of algorithms to identify types of leaks in boreholes, provides a theoretical basis and accurate guidance for the evaluation of the quality of the sealing of boreholes and borehole repairs, and supports the improved use of boreholes to extract gases from coal mines.


Asunto(s)
Carbón Mineral , Gases , Teorema de Bayes
20.
Sci Rep ; 12(1): 7518, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525851

RESUMEN

Particle loss is an important cause of water inrush catastrophes in collapsed columns. In order to study the relationship between the lost particles of different graded rock samples and the pore structure of the subsidence column filling, experiments were designed and the changes of the seepage parameters of graded rock samples during the particle migration process under different permeable water pressures P and axial loads F were determined. The results show that: (1) There will be obvious collapse, silting and particle loss behaviors in the sample during different loading processes, and the rock samples with gradation values of n = 0.3 and n = 0.5 are dominant; (2) The relationship between porosity φ and bearing pressure The exponential function can be used to fit the loads F well, and the porosity decreases with the increase of the bearing load. The water surging characteristics before and after 1.2 MPa are mainly in the turbulent water gushing stage, accompanied by instantaneous slurry. Possibility of splashing and indenter sliding; (3) After infiltration, the condition of the remaining skeleton rock samples in the cylinder generally shows a trend of first decreasing rapidly, then increasing slowly, and then decreasing; (4) The gradation value n of the sample and the bottom There is a good correlation between the damaged area and the mean value S of the maximum area of the top water inrush channel. The maximum area increase of the damaged area and the maximum area increase of the water inrush channel show an opposite trend. The permeable pores of the graded samples can be divided into There are three situations of digging and collapse, water inrush gap and scouring hole, and the pore seepage process can be divided into 4 stages of inoculation of water seepage, rapid adjustment, rapid scour and steady flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...