Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407339, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714494

RESUMEN

Two-electron oxidative addition is one of the most important elementary reactions for d-block transition metals but it is uncommon for f-block elements. Here, we report the first examples of intermolecular oxidative addition of E-H (E=C, N) bonds to uranium(II) centers. The transient U(II) species was formed in-situ by reducing a heterometallic cluster featuring U(IV)-Pd(0) bonds with potassium-graphite (KC8). Oxidative addition of C-H or N-H bonds to the U(II) centers was observed when this transient U(II) species was treated with benzene, carbazole or 1-adamantylamine, respectively. The U(II) centers could also react with tetracene, biphenylene or N2O, leading to the formation of arene reduced U(IV) products and uranyl(VI) species via two- or four-electron processes. This study demonstrates that the intermolecular two-electron oxidative addition reactions are viable for actinide elements.

2.
J Am Chem Soc ; 146(5): 3458-3470, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270100

RESUMEN

Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.

3.
Angew Chem Int Ed Engl ; 62(45): e202310114, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37721856

RESUMEN

The catalytic C(sp3 )-C(sp3 ) coupling of alkyl halides and tertiary amines offers a promising tool for the rapid decoration of amine skeletons. However, this approach has not been well established, partially due to the challenges in precisely distinguishing and controlling the reactivity of amine-coupling partners and their product homologues. Herein, we developed a metal-free photocatalytic system for the aminomethylation of alkyl halides through radical-involved C(sp3 )-C(sp3 ) bond formation, allowing for the synthesis of sterically congested tertiary amines that are of interest in organic synthesis but not easily prepared by other methods. Mechanistic studies disclosed that sterically hindered N-substituents are key to activate the amine coupling partners by tuning their redox potentials to drive the reaction forward.

4.
J Am Chem Soc ; 145(35): 19195-19201, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37616490

RESUMEN

We present the first enantioselective nickel-catalyzed borylative coupling of 1,3-dienes with aldehydes, providing an efficient route to highly valuable homoallylic alcohols in a single step. The reaction involves the 1,4-carboboration of dienes, leading to the formation of C-C and C-B bonds accompanied by the construction of two continuous stereogenic centers. Enabled by a chiral spiro phosphine-oxazoline nickel complex, this transformation yields products with exceptional diastereoselectivity, E-selectivity, and enantioselectivity. The diastereoselectivity of the reaction can be controlled by employing either (Z)-1,3-dienes or (E)-1,3-dienes.

5.
Nat Commun ; 14(1): 3326, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286579

RESUMEN

Control of the regioselectivity of α-alkylation of carbonyl compounds is a longstanding topic of research in organic chemistry. By using stoichiometric bulky strong bases and carefully adjusting the reaction conditions, selective alkylation of unsymmetrical ketones at less-hindered α-sites has been achieved. In contrast, selective alkylation of such ketones at more-hindered α-sites remains a persistent challenge. Here we report a nickel-catalysed alkylation of unsymmetrical ketones at the more-hindered α-sites with allylic alcohols. Our results indicate that the space-constrained nickel catalyst bearing a bulky biphenyl diphosphine ligand enables the preferential alkylation of the more-substituted enolate over the less-substituted enolate and reverses the conventional regioselectivity of ketone α-alkylation. The reactions proceed under neutral conditions in the absence of additives, and water is the only byproduct. The method has a broad substrate scope and permits late-stage modification of ketone-containing natural products and bioactive compounds.

6.
Insects ; 14(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37233097

RESUMEN

MiRNAs, as a kind of key regulators in gene expression, play vital roles in numerous life activities from cellular proliferation and differentiation to development and immunity. However, little is known about the regulatory manner of miRNAs in the development of Asian honey bee (Apis cerana) guts. Here, on basis of our previously gained high-quality transcriptome data, transcriptome-wide identification of miRNAs in the larval guts of Apis cerana cerana was conducted, followed by investigation of the miRNAs' differential expression profile during the gut development. In addition to the regulatory network, the potential function of differentially expressed miRNAs (DEmiRNAs) was further analyzed. In total, 330, 351, and 321 miRNAs were identified in the 4-, 5-, and 6-day-old larval guts, respectively; among these, 257 miRNAs were shared, while 38, 51, and 36 ones were specifically expressed. Sequences of six miRNAs were confirmed by stem-loop RT-PCR and Sanger sequencing. Additionally, in the "Ac4 vs. Ac5" comparison group, there were seven up-regulated and eight down-regulated miRNAs; these DEmiRNAs could target 5041 mRNAs, involving a series of GO terms and KEGG pathways associated with growth and development, such as cellular process, cell part, Wnt, and Hippo. Comparatively, four up-regulated and six down-regulated miRNAs detected in the "Ac5 vs. Ac6" comparison group and the targets were associated with diverse development-related terms and pathways, including cell, organelle, Notch and Wnt. Intriguingly, it was noticed that miR-6001-y presented a continuous up-regulation trend across the developmental process of larval guts, implying that miR-6001-y may be a potential essential modulator in the development process of larval guts. Further investigation indicated that 43 targets in the "Ac4 vs. Ac5" comparison group and 31 targets in the "Ac5 vs. Ac6" comparison group were engaged in several crucial development-associated signaling pathways such as Wnt, Hippo, and Notch. Ultimately, the expression trends of five randomly selected DEmiRNAs were verified using RT-qPCR. These results demonstrated that dynamic expression and structural alteration of miRNAs were accompanied by the development of A. c. cerana larval guts, and DEmiRNAs were likely to participate in the modulation of growth as well as development of larval guts by affecting several critical pathways via regulation of the expression of target genes. Our data offer a basis for elucidating the developmental mechanism underlying Asian honey bee larval guts.

7.
Small Methods ; 7(8): e2201530, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36732820

RESUMEN

Since the discovery of Ti3 C2 Tx in 2011, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes, have been attracting great attention as the emerging member of 2D materials. The surface terminations, intercalants, and the interfaces between MXenes and other substances are of importance for tuning the properties of MXenes. For instance, surface termination of MXenes can change the density of states at the Fermi levels to make MXenes electronically tunable. Different terminations can lead to band opening and changes in behavior from metallic to semiconducting, as well as dramatic changes in the work function of MXenes. On the other hand, electron transfer occurring at the interface between MXenes and other substances due to the physical interaction/chemical bonding, changes the electron configuration of MXenes and realizes the functionalization. In this review, the most up-to-date progress of the surface and interface regulation of MXenes is comprehensively summarized, introducing the effect of various synthesis methods on the surface and interface chemistry, the routes on tuning the surface and interface chemistry, and the related potential applications. Finally, the perspective of the future research directions and challenges on surface and interface regulation is outlined.

8.
PeerJ ; 11: e14578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643639

RESUMEN

The main purpose of this study was to study the changes in growth, root system, and tissue anatomical structure of Pinus sylvestris var. mongolica under soil drought conditions. In this study, the growth indexes and photosynthesis of P. sylvestris var. mongolica seedlings under soil drought stress were studied by pot cultivation. Continuous pot water control experiment of the indoor culture of P. sylvestris var. mongolica was carried out, ensuring that the soil water content of each treatment reached 80%, 40%, and 20% of the field moisture capacity as control, moderate drought and severe drought, respectively. The submicroscopic structures of the needles and roots were observed using a scanning electron microscope and a transmission electron microscope. The response of soil roots to drought stress was studied by root scanning. Moderate drought stress increased needle stomatal density, while under severe drought stress, stomatal density decreased. At the same time, the total number of root tips, total root length, root surface area, and root volume of seedlings decreased with the deepening of the drought. Furthermore, moderate drought and severe drought stress significantly reduced the chlorophyll a and chlorophyll b content in P. sylvestris var. mongolica seedlings compared to the control group. The needle cells were deformed and damaged, and chloroplasts and mitochondria were damaged, gradually disintegrated, and the number of osmiophiles increased. There was also an increase in nuclear vacuolation.


Asunto(s)
Pinus sylvestris , Suelo , Clorofila A , Sequías , Plantones/fisiología , Agua
9.
J Adv Res ; 43: 205-218, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585109

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by oxidative stress that triggers motor neurons loss in the brain and spinal cord. However, the mechanisms underlying the exact role of oxidative stress in ALS-associated neural degeneration are not definitively established. Oxidative stress-generated phospholipid peroxides are known to have extensive physiological and pathological consequences to tissues. Here, we discovered that the deficiency of glutathione peroxidase 4 (GPX4), an essential antioxidant peroxidase, led to the accumulation of phospholipid peroxides and resulted in a loss of motor neurons in spinal cords of ALS mice. Mutant human SOD1G93A transgenic mice were intrathecally injected with neuron-targeted adeno-associated virus (AAV) expressing GPX4 (GPX4-AAV) or phospholipid peroxidation inhibitor, ferrostatin-1. The results showed that impaired motor performance and neural loss induced by SOD1G93A toxicity in the lumbar spine were substantially alleviated by ferrostatin-1 treatment and AAV-mediated GPX4 delivery. In addition, the denervation of neuron-muscle junction and spinal atrophy in ALS mice were rescued by neural GPX4 overexpression, suggesting that GPX4 is essential for the motor neural maintenance and function. In comparison, conditional knockdown of Gpx4 in the spinal cords of Gpx4fl/fl mice triggered an obvious increase of phospholipid peroxides and the occurrence of ALS-like motor phenotype. Altogether, our findings underscore the importance of GPX4 in maintaining phospholipid redox homeostasis in the spinal cord and presents GPX4 as an attractive therapeutic target for ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Glutatión Peroxidasa , Enfermedades Neurodegenerativas , Fosfolípidos , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Peróxidos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Fosfolípidos/metabolismo
10.
Adv Mater ; 35(11): e2210551, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36579725

RESUMEN

As an important organic photofunctional material, spirooxazine (SO) usually does not exhibit photochromism in the solid state since the intermolecular π-π stacking impedes photoisomerization. Developing photochromic SO in the solid state is crucial for practical applications but is still full of challenges. Here, a series of spirooxazine derivatives (SO1-SO4) with bulky aromatic substituents at the 4- and 7-positions of the skeleton, which provide them with a large volume with which to undergo solid-state photochromism under mild conditions, is designed and synthesized. All the compounds SO1-SO4 exhibit tunable solid photochromism without ground colors, excellent fatigue resistance, and high thermal stability. Notably, it takes only 15 s for SO4 to reach the saturation of absorption intensity, thought to represent the fastest solid-state photoresponse of spirooxazines. X-ray crystal structures of the intermediate compound SO0 and the products SO1-SO2 as well as computational studies suggest that the bulky aromatic groups can lead to a hypochromic effect, allowing for the photochromism of SO in the solid state. The ideal photochromic properties of these spirooxazines open a new avenue for their applications in UV printing, quick response code, and related fields.

11.
J Colloid Interface Sci ; 630(Pt A): 502-511, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36270171

RESUMEN

V2CTx MXene has shown potential as an electrode material for lithium-ion batteries (LIBs) due to its high theoretical capacity. However, most reports on V2CTx are confined to multilayer structures in LIBs, and V2CTx nanosheets have a serious restacking problem, which results in their low cyclic stability. Herein, we report the synthesis of few-layer V2CTx/carbon nanotubes (CNTs) composite by tetramethylammonium hydroxide (TMAOH) delamination and electrostatic flocculation of NH4+ ions. Few-layer V2CTx nanosheets with crimped structure can effectively restrain restacking and guarantee full utilization of active surface area. Moreover, with the introduction of CNTs, a developed electrical conductivity network was formed, and CNTs provided structural support for the sheets further restraining their restacking, and ensuring their stable structure during the charge and discharge process even at high rates. This made the few-layer V2CTx/CNT to exhibit a high specific capacitance of 621 mAh/g after 100 cycles at 0.1 A/g, and outstanding rate performance of 290 mAh/g at 5 A/g. Furthermore, the few-layer V2CTx/CNT electrode showed excellent cycling stability with 82.1 % capacitance retention after 2000 cycles at 5 A/g. This shows it has significant potential for lithium-ion batteries applications.

12.
Nat Commun ; 13(1): 6731, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347885

RESUMEN

The surface and interface chemistry are of significance on controlling the properties of two-dimensional transition metal carbides and nitrides (MXenes). Numerous efforts have been devoted to the regulation of Ti3C2Tx MXene, however, tuning interlayer spacing and surface halogen termination of other MXenes (besides Ti3C2Tx) is rarely reported while demanded. Here we propose a Lewis-basic halides treatment, which is capable of simultaneously engineering the interlayer spacing and surface termination of various MXenes. Benefited from the abundant desolvated halogen anions and cations in molten state Lewis-basic halides, the -F termination was substituted by nucleophilic reaction and the interlayer spacing was enlarged. Ti3C2Tx MXene treated by this method showed a high specific capacity of 229 mAh g-1 for Li+ storage, which is almost 2 times higher than pristine one. Considering the universality, our method provides an approach to regulating the properties of MXenes, which may expand their potential applications in energy storage, optoelectronics and beyond.

13.
Front Immunol ; 13: 916284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860256

RESUMEN

Background: Lung adenocarcinoma (LUAD) has a very high morbidity and mortality rate, and its pathogenesis and treatment are still in the exploratory stage. Fatty acid metabolism plays a significant role in tumorigenesis, progression, and immune regulation. However, the gene expression of fatty acid metabolism in patients with LUAD and its relationship with prognosis remain unclear. Methods: We collected 309 fatty acid metabolism-related genes, established a LUAD risk model based on The Cancer Genome Atlas (TCGA) using Least Absolute Shrinkage Selection Operator (LASSO) regression analysis, and divided LUAD patients into high-risk and low-risk groups, which were further validated using the Gene Expression Omnibus (GEO) database. The nomogram, principal component analysis (PCA), and receiver operating characteristic (ROC) curves showed that the model had the best predictive performance. The ROC curves and calibration plots confirmed that the nomogram had good predictive power. We further analyzed the differences in clinical characteristics, immune cell infiltration, immune-related functions, chemotherapy drug sensitivity, and immunotherapy efficacy between the high-risk and low-risk groups. We also analyzed the enrichment pathways and protein-protein interaction (PPI) networks of different genes in the high-risk and low-risk groups to screen for target genes and further explored the correlation between target genes and differences in survival prognosis, clinical characteristics, gene mutations, and immune cells. Results: Risk score and staging are independent prognostic factors for patients with LUAD. The high-risk group had lower immune cell infiltration, was more sensitive to chemotherapeutic agents, and had a poorer survival prognosis. We also obtained three pivotal genes with poor survival prognosis in the high expression group, which were strongly associated with clinical symptoms and immune cells. Conclusion: Risk score and staging are independent prognostic factors for patients with LUAD. The high-risk group had lower immune cell infiltration, was more sensitive to chemotherapeutic agents, and had a poorer survival prognosis. We also obtained three survival prognosis-associated target genes that are closely associated with clinical symptoms and immune cells and may be potential targets for immune-targeted therapy in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Pronóstico
14.
Metabolites ; 12(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35736499

RESUMEN

Thymomas and thymic carcinomas are malignant thymic epithelial tumors (TETs) with poor outcomes if non-resectable. However, the tumorigenesis, especially the metabolic mechanisms involved, is poorly studied. Untargeted metabolomics analysis was utilized to screen for differential metabolic profiles between thymic cancerous tissues and adjunct noncancerous tissues. Combined with transcriptomic data, we comprehensively evaluated the metabolic patterns of TETs. Metabolic scores were constructed to quantify the metabolic patterns of individual tumors. Subsequent investigation of distinct clinical outcomes and the immune landscape associated with the metabolic scores was conducted. Two distinct metabolic patterns and differential metabolic scores were identified between TETs, which were enriched in a variety of biological pathways and correlated with clinical outcomes. In particular, a high metabolic score was highly associated with poorer survival outcomes and immunosuppressive status. More importantly, the expression of two prognostic genes (ASNS and BLVRA) identified from differential metabolism-related genes was significantly associated with patient survival and may play a key role in the tumorigenesis of TETs. Our findings suggest that differential metabolic patterns in TETs are relevant to tumorigenesis and clinical outcome. Specific transcriptomic alterations in differential metabolism-related genes may serve as predictive biomarkers of survival outcomes and potential targets for the treatment of patients with TETs.

15.
Autophagy ; 18(4): 745-764, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34313529

RESUMEN

Macroautophagy/autophagy is an important innate and adaptive immune response that can clear microbial pathogens through guiding their degradation. Virus infection in animals and plants is also known to induce autophagy. However, how virus infection induces autophagy is largely unknown. Here, we provide evidence that the early phase of rice black-streaked dwarf virus (RBSDV) infection in Laodelphax striatellus can also induce autophagy, leading to suppression of RBSDV invasion and accumulation. We have determined that the main capsid protein of RBSDV (P10) is the inducer of autophagy. RBSDV P10 can specifically interact with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), both in vitro and in vivo. Silencing of GAPDH in L. striatellus could significantly reduce the activity of autophagy induced by RBSDV infection. Furthermore, our results also showed that both RBSDV infection and RBSDV P10 alone can promote phosphorylation of AMP-activated protein kinase (AMPK), resulting in GAPDH phosphorylation and relocation of GAPDH from the cytoplasm into the nucleus in midgut cells of L. striatellus or Sf9 insect cells. Once inside the nucleus, phosphorylated GAPDH can activate autophagy to suppress virus infection. Together, these data illuminate the mechanism by which RBSDV induces autophagy in L. striatellus, and indicate that the autophagy pathway in an insect vector participates in the anti-RBSDV innate immune response.Abbreviations3-MA: 3-methyladenine; AMPK: AMP-activated protein kinase; ATG: autophagy-related; co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; dpf: days post-feeding; dsRNA: double-stranded RNA; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione-S-transferase; RBSDV: Rice black-streaked dwarf virus; TEM: transmission electron microscope.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Hemípteros , Animales , Autofagia , Gliceraldehído-3-Fosfato Deshidrogenasas , Fosforilación , Virus de Plantas
16.
Mol Plant Pathol ; 23(3): 447-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897936

RESUMEN

The unfolded protein response (UPR) plays important roles in plant virus infection. Our previous study has proved that rice stripe virus (RSV) infection elicits host UPR. However, the mechanism on how the UPR is triggered upon RSV infection remains obscure. Here, we show that the bZIP17/28 branch of the UPR signalling pathway is activated upon RSV infection in Nicotiana benthamiana. We found that membrane-associated proteins NSvc2 and NSvc4 encoded by RSV are responsible for the activation of the bZIP17/28 branch. Ectopic expression of NSvc2 or NSvc4 in plant leaves induced the proteolytic processing of NbbZIP17/28 and up-regulated the expression of UPR-related genes. Silencing NbbZIP17/28 significantly inhibited RSV infection. We show that RSV can specifically elicit the UPR through the bZIP17/28 branch, thus promoting virus infection of N. benthamiana plants.


Asunto(s)
Enfermedades de las Plantas , Tenuivirus , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Tenuivirus/genética , Nicotiana/genética , Respuesta de Proteína Desplegada
17.
Dalton Trans ; 51(2): 638-644, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34907406

RESUMEN

MoS2-Based materials are promising hydrogen evolution reaction (HER) electrocatalysts. However, their HER activities are restrained by the poor population of HER activated edge centers, the large area exposed HER inert basal planes, and low conductivity. Fixing these problems on one system is an effective strategy, but it remains a challenge due to the harsh synthetic conditions. Herein, cobalt carbonate hydroxide (CoCH) nanosheets were used as the substrate for preparing a three-dimensional self-supported cross-linked (3DSC) Co-MoS2 nanostructured HER catalyst, which possesses abundant active centers and fast electronic transfer ability. In addition, Co activates the basal-plane sulfur atom in MoS2 to be the HER reactive center effectively. Benefiting from these advantages, 3DSC Co-MoS2 electrode integrated on carbon cloth (CC) shows that it can drive the current density of 10 and 100 mA cm-2 with only 40 and 119 mV overpotentials, respectively, which is superior to other MoS2-based HER catalysts reported recently. This research provides a facile strategy for the improvement of efficient HER electrocatalysts.

18.
Front Chem ; 9: 766442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869207

RESUMEN

The synthesis and characterization of a novel florescent chemosensor 1 with two different types of cationic binding sites have been reported in this work, which is a calix[4]crown derivative in 1,3-alternate conformation bearing two 2-phenyl-5-(4-dimethylaminopyenyl)-1,3,4-oxadiazole units. The recognition behaviors of 1 in dichloromethane/acetonitrile solution to alkali metal ions (Na+ and K+), alkaline earth metal ions (Mg2+ and Ca2+), and transition metal ions (Co2+, Ni2+, Zn2+, Cd2+, Cu2+, Mn2+, and Ag+) have been investigated by UV-Vis and fluorescence spectra. The fluorescence of 1 might be quenched selectively by Cu2+ due to the photo-induced electron transfer mechanism, and the quenched emission from 1 could be partly revived by the addition of Ca2+ or Mg2+; thus, the receptor 1 might be worked as an on-off switchable fluorescent chemosensor triggered by metal ion exchange.

19.
Front Microbiol ; 12: 757451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721366

RESUMEN

Picornaviruses cause diseases in a wide range of vertebrates, invertebrates and plants. Here, a novel picornavirus was identified by RNA-seq technology from rice plants showing dwarfing and curling symptoms, and the name rice curl dwarf-associated virus (RCDaV) is tentatively proposed. The RCDaV genome consists of an 8,987 nt positive-stranded RNA molecule, excluding a poly(A) tail, that encodes two large polyproteins. Using in vitro cleavage assays, we have identified that the RCDaV 3C protease (3Cpro) as a serine protease recognizes the conserved EPT/S cleavage site which differs from the classic Q(E)/G(S) sites cleaved by most picornaviral 3C chymotrypsin-like cysteine proteases. Therefore, we comprehensively deciphered the RCDaV genome organization and showed that the two polyproteins of RCDaV can be cleaved into 12 mature proteins. We found that seven unclassified picornaviruses also encode a 3Cpro similar to RCDaV, and use the highly conserved EPT/S as the cleavage site. The precise genome organizations of these viruses were illustrated. Moreover, RCDaV and the seven unclassified picornaviruses share high sequence identities and similar genome organizations, and cluster into a distinct clade in the order Picornavirales. Our study provides valuable information for the understanding of picornaviral 3Cpros, deciphers the genome organization of a few relatively obscure picornaviruses, and lays the foundation for further pathogenesis research on these viruses.

20.
J Exp Clin Cancer Res ; 40(1): 341, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706761

RESUMEN

BACKGROUND: Histone epigenetic modification disorder is an important predisposing factor for the occurrence and development of many cancers, including colorectal cancer (CRC). The role of MYSM1, a metalloprotease that deubiquitinates monoubiquitinated histone H2A, in colorectal cancer was identified to evaluate its potential clinical application value. METHODS: MYSM1 expression levels in CRC cell lines and tumor tissues were detected, and their associations with patient survival rate and clinical stage were analyzed using databases and tissue microarrays. Gain- and loss-of-function studies were performed to identify the roles of MYSM1 in CRC cell proliferation, apoptosis, cell cycle progression, epithelial-mesenchymal transition (EMT) and metastasis in vitro and in vivo. ChIP, rescue assays and signal pathway verification were conducted for mechanistic study. Immunohistochemistry (IHC) was used to further assess the relationship of MYSM1 with CRC diagnosis and prognosis. RESULTS: MYSM1 was significantly downregulated and was related to the overall survival (OS) of CRC patients. MYSM1 served as a CRC suppressor by inducing apoptosis and inhibiting cell proliferation, EMT, tumorigenic potential and metastasis. Mechanistically, MYSM1 directly bound to the promoter region of miR-200/CDH1, impaired the enrichment of repressive H2AK119ub1 modification and epigenetically enhanced miR-200/CDH1 expression. Testing of paired CRC patient samples confirmed the positive regulatory relationship between MYSM1 and miR-200/CDH1. Furthermore, silencing MYSM1 stimulated PI3K/AKT signaling and promoted EMT in CRC cells. More importantly, a positive association existed between MYSM1 expression and a favorable CRC prognosis. CONCLUSIONS: MYSM1 plays essential suppressive roles in CRC tumorigenesis and is a potential target for reducing CRC progression and distant metastasis.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transactivadores/genética , Proteasas Ubiquitina-Específicas/genética , Animales , Apoptosis/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Xenoinjertos , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/genética , Proteasas Ubiquitina-Específicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...