Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(12): 4671-4678, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262127

RESUMEN

A self-powered wearable brain-machine-interface system with pulse detection and brain stimulation for ceasing action has been realized. The system is composed of (1) a power supply unit that employs a piezoelectric generator and converts the mechanical energy of human daily activities into electricity; (2) a neck pulse biosensor that allows continuous measurements of carotid pulse by using a piezoelectric polyvinylidene fluoride film; (3) a data analysis module that enables a coordinated brain-machine-interface system to output brain stimulation signals; and (4) brain stimulating electrodes linked to the brain that implement behavioral intervention. Demonstration of the system with stimulating electrodes implanted in the periaqueductal gray (PAG) in running mice reveals the great effect of forced ceasing action. The mice stop their running within several seconds when the stimulation signals are sent into the PAG brain region (inducing fear). This self-powered scheme for neural stimulation realizes specific behavioral intervention without any external power supply, thus providing a new concept for future behavior intervention.


Asunto(s)
Interfaces Cerebro-Computador , Dispositivos Electrónicos Vestibles , Animales , Encéfalo , Suministros de Energía Eléctrica , Electrodos , Ratones
2.
Nanomicro Lett ; 12(1): 105, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34138107

RESUMEN

We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply. The device mainly consists of ZnO nanowire (NW) arrays and flexible polydimethylsiloxane substrate. Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs. The sweat flowing on the NWs (with lactate oxidase modification) can output a DC electrical signal, and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal. ZnO NWs generate electric double layer (EDL) in sweat, which causes a potential difference between the upper and lower ends (hydrovoltaic effect). The product of the enzymatic reaction can adjust the EDL and influence the output. This device can be integrated with wireless transmitter and may have potential application in constructing sports big data. This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.

3.
Nanomicro Lett ; 10(2): 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30393681

RESUMEN

Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...