Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Water Res ; 258: 121759, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38754299

RESUMEN

Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.

2.
Water Res ; 257: 121669, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38728786

RESUMEN

Tire wear particles (TWPs) are considered a significant contributor of microplastics (MPs) in the sludge during heavy rainfall events. Numerous studies have shown that hydrothermal treatment (HT) of sludge can accelerate the leaching of MP-derived compound into hydrothermal liquid, thus impairing the performance of subsequent anaerobic digestion and the quality of the hydrothermal liquid fertilizer. However, the leaching behavior of TWPs in the HT of sludge remains inadequately explored. This study examined the molecular composition of TWP-derived compounds and transformation pathways of representative tire-related additives under different hydrothermal temperatures using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with mass difference analysis. The acute toxicity and phytotoxicity of TWP leachates were assessed using Vibrio qinghaiensis Q67 and rice hydroponics experiments. The results indicated that elevating the hydrothermal temperature not only amplified the leaching behavior of TWPs but also enhanced the chemical complexity of the TWP leachate. Utilizing both suspect and non-target screenings, a total of 144 compounds were identified as additives, including N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD), hexa(methoxymethyl)melamine (HMMM), dibutyl phthalate (DBP). These additives underwent various reactions, such as desaturation, acetylation, and other reactions, leading to the formation of different transformation products (TPs). Moreover, certain additives, including caprolactam and 2,2,6,6-tetramethyl-4-piperidinol, demonstrated the potential to form conjugate products with amino acids or Maillard products. Meanwhile, TWP-derived compounds showed significant acute toxicity and detrimental effects on plant growth. This study systematically investigated the environmental fate of TWPs and their derived compounds during the HT of sludge, offering novel insights into the intricate interactions between the micropollutants and dissolved organic matter (DOM) in sludge.

3.
Bioresour Technol ; 402: 130809, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723729

RESUMEN

Phosphorus is enriched in waste activated sludge (WAS) during wastewater treatment, and organic phosphorus (OP) is a potential slow-release P fertilizer. The chemical coagulants used in sludge dewatering leave numerous residues in WAS that affect sludge composting. In this study, the effects of polyaluminum chloride (PAC) and polyferric sulfate (PFS) on the bioconversion of dissolved OP (DOP) during sludge composting were investigated. The results revealed that PFS conditioning promoted the transformation and bioavailability of DOP, whereas PAC conditioning inhibited. Results indicated that PFS conditioning enhanced the transformation of OP molecules in the thermophilic phase. Through oxidation and dehydrogenation reactions, 1-hydroxy-pentane-3,4-diol-5-phosphate and D-ribofuranose 5-phosphate with high bioactivity were generated in the PFS-conditioned compost. Enzymatic hydrolysis experiments further verified that PFS conditioning enhanced the DOP bioavailability in the compost, whereas PAC conditioning inhibited it. The study has provided molecular insights into the effects of chemical conditioning on DOP conversion during sludge composting.

4.
Heliyon ; 10(9): e29978, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726147

RESUMEN

Aim: To investigate whether SJF functions in similar manner as the key substance in the inflammatory process, soluble epoxide hydrolase (sEH) inhibitor, to inhibit the arachidonic acid metabolic pathway and nuclear factor kappa-B(NF-κB) signal path in the hippocampi of postpartum depression rats. Methods: The rats were subcutaneous injected estradiol benzoate and progesterone to build PPD rat model. SJF, paroxetine hydrochloride and sEH inhibitor (AUDA) were used to treat PPD rats for 3 weeks. Then the morphological changes of hippocampi and various proteins were observed after that behavioral test were conducted in all 36 SD rats in six group: SJF, paroxetine, AUDA, PPD, sham and normal group. Results: Weight, results of sucrose preference, upright times, total and center squares crossing decreased significantly (P < 0.01), whereas immobility time increased (P < 0.01). Results above were reversed in animals that in the SJF, paroxetine and AUDA groups. Hippocampal neurons in PPD rats partially degenerated with narrowed nuclei, increased autophagy and mitochondria bound to lysosomes were visible while the autophagy of hippocampal neurons in the paroxetine and AUDA group decreased, with a small amount of lysosomes. sEH, COX-2, 5-LOX, TNF-α, IL-1, IL-6, NF-κB p65, and Cor increased in hippocampi of PPD rats while EETs and 5-HT decreased. Protein expressions of Ibal, GFAP, p-IκBα, p65, and p-p65(S536)increased in PPD animals. Those changes were reversed by SJF, paroxetine and AUDA. Gene expressions of TNF-α, IL-1ß, IL-6, 5-LOX, COX-2 and p65 increased in PPD rats and the changes of expression in these genes were reversed by paroxetine and AUDA. SJF reversed the gene expression changes of COX-2, TNF-α, and IL-1ß. Conclusion: SJF may have an analogous effect as sEH inhibitor to relieve depressive symptoms by suppressing inflammatory signaling pathways in hippocampi of PPD rats, which involves AA metabolic pathway and NF-κB signal pathway.

5.
Environ Pollut ; : 124189, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776995

RESUMEN

Currently, headspace gas chromatography-mass spectrometry is a widely used method to identify the key odorants of sludge. However, the effect of incubation temperature on the generation and emission of key odorants from sludge was still uncertain. Thus, in this paper, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-coupled ion mobility spectrometry (HS-GC-IMS) were carried out to analyze the volatiles emitted from the sludge incubated at different temperatures (30°C, 50°C, 60°C, and 80°C). The results indicated that the total volatile concentration of the sludge increased with temperatures, which affected the identified proportion of sludge key odorants to a certain extent. Differently from the aqueous solutions, the variation of volatile emission from the sludge was inconsistent with temperature changes, suggesting a multifactorial influence of incubation temperature on the identification of sludge odorants. The microbial community structure and adenosine triphosphate (ATP) metabolic activity of the sludge samples were analyzed at the initial state, 30°C, and 80°C. Although no significant effect of incubation temperature on the microbial community structure of the sludge, the incubation at 80°C led to a noticeable decrease in microbial ATP metabolic activity, accompanied by a significant change in the proportion of odor-related microorganisms with low relative abundances. Changes in the composition and activity of these communities jointly contributed to the differences in odor emission from sludge at different temperatures. In summary, the incubation temperature affects the production and emission of volatiles from sludge through physicochemical and biochemical mechanisms, by which the microbial metabolism playing a crucial role. Therefore, when analyzing the key odorants of sludge, these factors should be considered.

6.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771879

RESUMEN

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Asunto(s)
Proteínas Bacterianas , Macrófagos , Proteínas de la Membrana , Infecciones Estafilocócicas , Staphylococcus aureus , Sistemas de Secreción Tipo VII , Ubiquitinación , Staphylococcus aureus/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Animales , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Sistemas de Secreción Tipo VII/inmunología , Sistemas de Secreción Tipo VII/genética , Ratones , Evasión Inmune , Interacciones Huésped-Patógeno/inmunología
7.
Clin Chim Acta ; 559: 119716, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710402

RESUMEN

OBJECTIVE: To integrate an enhanced molecular diagnostic technique to develop and validate a machine-learning model for diagnosing sepsis. METHODS: We prospectively enrolled patients suspected of sepsis from August 2021 to August 2023. Various feature selection algorithms and machine learning models were used to develop the model. The best classifier was selected using 5-fold cross validation set and then was applied to assess the performance of the model in the testing set. Additionally, we employed the Shapley Additive exPlanations (SHAP) method to illustrate the effects of the features. RESULTS: We established an optimized mNGS assay and proposed using the copies of microbe-specific cell-free DNA per milliliter of plasma (CPM) as the detection signal to evaluate the real burden, with strong precision and high accuracy. In total, 237 patients were eligible for participation, which were randomly assigned to either the training set (70 %, n = 165) or the testing set (30 %, n = 72). The random forest classifier achieved accuracy, AUC and F1 scores of 0.830, 0.918 and 0.856, respectively, outperforming other machine learning models in the training set. Our model demonstrated clinical interpretability and achieved good prediction performance in differentiating between bacterial sepsis and non-sepsis, with an AUC value of 0.85 and an average precision of 0.91 in the testing set. Based on the SHAP value, the top nine features of the model were PCT, CPM, CRP, ALB, SBPmin, RRmax, CREA, PLT and HRmax. CONCLUSION: We demonstrated the potential of machine-learning approaches for predicting bacterial sepsis based on optimized mcfDNA sequencing assay accurately.


Asunto(s)
Ácidos Nucleicos Libres de Células , Aprendizaje Automático , Sepsis , Humanos , Sepsis/diagnóstico , Sepsis/microbiología , Masculino , Femenino , Persona de Mediana Edad , Ácidos Nucleicos Libres de Células/sangre , Anciano , Análisis de Secuencia de ADN , Estudios Prospectivos
8.
Environ Int ; 186: 108629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582060

RESUMEN

Recently, extreme wildfires occur frequently around the world and emit substantial brown carbon (BrC) into the atmosphere, whereas the molecular compositions and photochemical evolution of BrC remain poorly understood. In this work, primary smoke aerosols were generated from wood smoldering, and secondary smoke aerosols were formed by the OH radical photooxidation in an oxidation flow reactor, where both primary and secondary smoke samples were collected on filters. After solvent extraction of filter samples, the molecular composition of dissolved organic carbon (DOC) was determined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The molecular composition of dissolved BrC was obtained based on the constraints of DOC formulae. The proportion of dissolved BrC fractions accounted for approximately 1/3-1/2 molecular formulae of DOC. The molecular characteristics of dissolved BrC showed higher levels of carbon oxidation state, double bond equivalents, and modified aromaticity index than those of DOC, indicating that dissolved BrC fractions were a class of organic structures with relatively higher oxidation state, unsaturated and aromatic degree in DOC fractions. The comparative analysis suggested that aliphatic and olefinic structures dominated DOC fractions (contributing to 70.1%-76.9%), while olefinic, aromatic, and condensed aromatic structures dominated dissolved BrC fractions (contributing to 97.5%-99.9%). It is worth noting that dissolved BrC fractions only contained carboxylic-rich alicyclic molecules (CRAMs)-like structures, unsaturated hydrocarbons, aromatic structures, and highly oxygenated compounds. CRAMs-like structures were the most abundant species in both DOC and dissolved BrC fractions. Nevertheless, the specific molecular characteristics for DOC and dissolved BrC fractions varied with subgroups after aging. The results highlight the similarities and differences in the molecular compositions and characteristics of DOC and dissolved BrC fractions with aging. This work will provide insights into understanding the molecular composition of DOC and dissolved BrC in smoke.


Asunto(s)
Aerosoles , Carbono , Humo , Madera , Carbono/análisis , Carbono/química , Humo/análisis , Madera/química , Aerosoles/análisis , Aerosoles/química , Oxidación-Reducción , Incendios Forestales , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Procesos Fotoquímicos
9.
J Phys Chem A ; 128(15): 3007-3014, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38581407

RESUMEN

Carbon dioxide (CO2) adsorption is a critical step to curbing carbon emissions from fossil fuel combustion. Among various options, transition metal oxides have received extensive attention as promising CO2 adsorbents due to their affordability and sustainability for large-scale use. Here, the nature of binding interactions between CO2 molecules and cationic scandium oxides of different sizes, i.e., ScO+, Sc2O2+, and Sc3O4+, is investigated by mass-selective infrared photodissociation spectroscopy combined with quantum chemical calculations. The well-accepted electrostatic considerations failed to provide explanations for the trend in the binding strengths and variations in the binding orientations between CO2 and metal sites of cationic scandium oxides. The importance of orbital interactions in the driving forces for CO2 adsorption on cationic scandium oxides was revealed by energy decomposition analyses. A molecular surface property, known as the local electron attachment energy, is introduced to elucidate the binding affinity and orientation-specific reactivity of cationic scandium oxides upon the CO2 attachment. This study not only reveals the governing factor in the binding behaviors of CO2 adsorption on cationic scandium oxides but also serves as an archetype for predicting and rationalizing favorable binding sites and orientations in extended surface-adsorbate systems.

10.
Anal Methods ; 16(17): 2732-2739, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38632935

RESUMEN

The growing popularity of e-cigarettes and the associated risks of nicotine addiction present a new challenge to global public health security. Measuring the nicotine levels in e-cigarette aerosols is essential to assess the safety of e-cigarettes. In this study, a rapid in situ method was developed for online quantification of nicotine in e-cigarette aerosols by using a homemade vacuum ultraviolet photoionization aerosol mass spectrometer (VUV-AMS). E-cigarette liquids with different nicotine concentrations were prepared to generate aerosols containing different levels of nicotine, which were employed as the calibration sources for nicotine quantification by VUV-AMS. The results showed that the mass concentration of nicotine in e-cigarette aerosols has a good linear relationship with its signal intensity in the mass spectrum, and the limits of detection and quantitation of nicotine by VUV-AMS were found to be 2.0 and 6.2 µg per puff respectively. Then the online method was utilized to measure five commercial e-cigarettes, and their nicotine yields were determined to be between 31 and 188 µg per puff with the nicotine fluxes from 7.7 to 70 µg s-1, agreeing with the results of the gas chromatography with a flame ionization detector (GC-FID). This study demonstrated the feasibility and advantages of VUV-AMS for quick quantification of nicotine in e-cigarette aerosols within seconds.


Asunto(s)
Aerosoles , Sistemas Electrónicos de Liberación de Nicotina , Espectrometría de Masas , Nicotina , Aerosoles/análisis , Nicotina/análisis , Espectrometría de Masas/métodos , Vacio , Rayos Ultravioleta , Límite de Detección
11.
Biomed Pharmacother ; 174: 116611, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643540

RESUMEN

BACKGROUND: The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS: In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS: These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.


Asunto(s)
Vacunas Bacterianas , Epítopos , Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/inmunología , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Ratones , Femenino , Epítopos/inmunología , Ratones Endogámicos BALB C , Antígenos Bacterianos/inmunología , Pulmón/microbiología , Pulmón/inmunología , Pulmón/patología , Inmunidad Celular/efectos de los fármacos , Staphylococcus aureus/inmunología , Adyuvantes Inmunológicos/farmacología , Inmunidad Humoral/efectos de los fármacos
12.
Water Res ; 255: 121446, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489963

RESUMEN

Inorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.

13.
Cell Tissue Res ; 396(2): 269-281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470494

RESUMEN

Nonunion is a challenging complication of fractures for the surgeon. Recently the Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum protein retention receptor 2 (KDELR2) has been found that involved in osteogenesis imperfecta. However, the exact mechanism is still unclear. In this study, we used lentivirus infection and mouse fracture model to investigate the role of KDELR2 in osteogenesis. Our results showed that KDELR2 knockdown inhibited the osteogenic differentiation of mBMSCs, whereas KDELR2 overexpression had the opposite effect. Furthermore, the levels of active-ß-catenin and phospho-GSK3ß (Ser9) were upregulated by KDELR2 overexpression and downregulated by KDELR2 knockdown. In the fracture model, mBMSCs overexpressing KDELR2 promoted healing. In conclusion, KDELR2 promotes the osteogenesis of mBMSCs by regulating the GSK3ß/ß-catenin signaling pathway.


Asunto(s)
Diferenciación Celular , Glucógeno Sintasa Quinasa 3 beta , Células Madre Mesenquimatosas , Osteogénesis , beta Catenina , Animales , Ratones , beta Catenina/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Transducción de Señal
14.
Sci Total Environ ; 925: 171584, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492598

RESUMEN

The global concern regarding the health risk associated with airborne microorganisms has prompted research in this field. However, there is a lack of systematic investigation into the particle-size distribution of airborne bacterial and fungal communities associated with seasons, which determines where they are deposited in the human respiratory tract. To address this gap, we conducted a study in Nanchang, located in central China, where we collected both coarse and fine particles during summer and winter seasons. The results demonstrated that microbial community exhibited obvious seasonal and particle-size variations except bacterial community in fine particles. Certain taxa (e.g., Bacteroidales, Ktedonobacterales, Capnodiales) displayed either seasonal and/or particle-size preferences. Furthermore, airborne microorganisms in coarse particles were more sensitive to season and particle size compared to those in fine particles, with fungal community being more susceptible than bacterial community. The susceptibility can be attributed to their high vulnerability to air pollutants and meteorological conditions, primarily PM2.5 and PM10. Additionally, a greater relative abundance of pathogenic fungi was observed in fine particles, even though microbial diversity in coarse particles was noticeably higher than that in fine particles. Furthermore, some predominant pathogens such as Alternaria, Nigrospora, and Escherichia-Shigella not only had particle size and/or seasonal preferences, but also were strongly correlated with environmental factors. This study advances our understanding of atmospheric pathogenic microorganisms and highlights the fungal health threat.


Asunto(s)
Contaminantes Atmosféricos , Micobioma , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Microbiología del Aire , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Bacterias , Alternaria
15.
Insights Imaging ; 15(1): 75, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499900

RESUMEN

PURPOSE: The temporal evolution of ventricular trabecular complexity and its correlation with major adverse cardiovascular events (MACE) remain indeterminate in patients presenting with acute ST elevation myocardial infarction (STEMI). METHODS: This retrospective analysis enrolled patients undergoing primary percutaneous coronary intervention (pPCI) for acute STEMI, possessing cardiac magnetic resonance (CMR) data in the acute (within 7 days), subacute (1 month after pPCI), and chronic phases (6 months after pPCI) from January 2015 to January 2020 at the three participating sites. Fractal dimensions (FD) were measured for the global, infarct, and remote regions of left ventricular trabeculae during each phase. The potential association of FD with MACE was analyzed using multivariate Cox regression. RESULTS: Among the 200 analyzed patients (182 men; median age, 61 years; age range, 50-66 years), 37 (18.5%) encountered MACE during a median follow-up of 31.2 months. FD exhibited a gradual decrement (global FD at acute, subacute, and chronic phases: 1.253 ± 0.049, 1.239 ± 0.046, 1.230 ± 0.045, p < 0.0001), with a more pronounced decrease observed in patients subsequently experiencing MACE (p < 0.001). The global FD at the subacute phase correlated with MACE (hazard ratio 0.89 (0.82, 0.97), p = 0.01), and a global FD value below 1.26 was associated with a heightened risk. CONCLUSION: In patients post-STEMI, the global FD, serving as an indicator of left ventricular trabeculae complexity, independently demonstrated an association with subsequent major adverse cardiovascular events, beyond factors encompassing left ventricular ejection fraction, indexed left ventricular end-diastolic volume, infarct size, heart rate, NYHA class, and post-pPCI TIMI flow. CRITICAL RELEVANCE STATEMENT: In patients who have had an ST-segment elevation myocardial infarction, global fractal dimension, as a measure of left ventricular trabeculae complexity, provided independent association with subsequent major adverse cardiovascular event. KEY POINTS: • Global and regional FD decreased after STEMI, and more so in patients with subsequent MACE. • Lower global FD at the subacute phase and Δglobal FD from acute to subacute phase were associated with subsequent MACE besides clinical and CMR factors. • Global FD at the subacute phase independently correlated with MACE and global FD value below 1.26 was associated with higher risk.

16.
Clin Transl Immunology ; 13(3): e1499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501063

RESUMEN

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

17.
Small ; : e2311642, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497490

RESUMEN

Singlet oxygen (1 O2 ) species generated in peroxymonosulfate (PMS)-based advanced oxidation processes offer opportunities to overcome the low efficiency and secondary pollution limitations of existing AOPs, but efficient production of 1 O2 via tuning the coordination environment of metal active sites remains challenging due to insufficient understanding of their catalytic mechanisms. Herein, an asymmetrical configuration characterized by a manganese single atom coordinated is established with one S atom and three N atoms (denoted as Mn-S1 N3 ), which offer a strong local electric field to promote the cleavage of O─H and S─O bonds, serving as the crucial driver of its high 1 O2 production. Strikingly, an enhanced the local electric field caused by the dynamic inter-transformation of the Mn coordination structure (Mn-S1 N3 ↔ Mn-N3 ) can further downshift the 1 O2 production energy barrier. Mn-S1 N3 demonstrates 100% selective product 1 O2 by activation of PMS at unprecedented utilization efficiency, and efficiently oxidize electron-rich pollutants. This work provides an atomic-level understanding of the catalytic selectivity and is expected to guide the design of smart 1 O2 -AOPs catalysts for more selective and efficient decontamination applications.

18.
Water Res ; 252: 121231, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324988

RESUMEN

Alkali-hydrothermal treatment (AHT) of sewage sludge is often used to recover value-added dissolved organic matters (DOM) enriched with artificial humic acids (HA). Microplastics (MPs), as emerging contaminants in sewage sludge, can leach organic compounds (MP-DOM) during AHT, which potentially impact the characteristics of thermally treated sludge's DOM. This study employed spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) to explore the impacts of MPs on DOM composition and transformation during AHT. The biological effects of DOM were also investigated by hydroponic experiments. The results showed that the leaching of MP-DOM led to a substantial increase in DOC content of DOM of thermally treated sludge. Conversely, the HA content significantly decreased in the presence of MPs, resulting in a decline of plant growth facilitation degree. FT-ICR-MS analysis revealed that the reduction in HA content was characterized by a notable decline in the abundance of O6-7 and N1-3O6-7 molecules. Reactomics results indicated that the leaching of MP-DOM inhibited the Maillard reaction but bolstered oxidation reactions. The inhibition of Maillard reaction, resulting in a decrease in crucial precursors (dicarbonyl compounds, ketoses, and deoxyglucosone), was responsible for the decrease of HA content. The primary mechanism responsible for inhibiting the Maillard reaction was the consumption of reactive amino reactants through two pathways. Firstly, the leaching of organic acids in MP-DOM caused decrease of sludge pH, leading to the protonation of amino groups. Secondly, the lipid-like compounds in MP-DOM underwent oxidation (-2H+O), producing fatty aldehydes that consumed the reactive amino reactants. These discoveries offer enhanced insights into the specific contribution of MPs to the composition, transformation, bioactivity of DOM during AHT process.


Asunto(s)
Microplásticos , Aguas del Alcantarillado , Plásticos , Compuestos Orgánicos/análisis , Espectrometría de Masas , Sustancias Húmicas/análisis , Materia Orgánica Disuelta
19.
Environ Sci Technol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329881

RESUMEN

Sunlight may lead to changes in disinfection byproducts (DBPs) formation potentials of source water via transforming dissolved organic matter (DOM); however, the underlying mechanisms behind these changes remain unclear. This work systematically investigated the effect of photochemical transformation of DOM from reservoir water (DOMRe) and micropolluted river water (DOMRi) after 36 h of simulated sunlight irradiation (equivalent to one month under natural sunlight) on DBPs formation. Upon irradiation, high molecular weight (MW) and aromatic molecules tended to be mineralized or converted into low-MW and highly oxidized (O/C > 0.5) ones which might react with chlorine to generate high levels of DBPs, resulting in an elevation in the yields (µg DBP/mg C) of almost all the measured DBPs and the quantities of unknown DBPs in both DOM samples after chlorination. Additionally, DOMRi contained more aromatic molecules susceptible to photooxidation than DOMRe. Consequently, irradiated DOMRi exhibited a greater increase in the formation potentials of haloacetonitriles, halonitromethanes, and specific regulated DBPs, with nitrogenous DBPs being responsible for the overall rise in the calculated cytotoxicity following chlorination. This work emphasized the importance of a comprehensive removal of phototransformation products that may serve as DBPs precursors from source waters, especially from micropolluted source waters.

20.
Cyborg Bionic Syst ; 5: 0063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188983

RESUMEN

Respiratory motion-induced vertebral movements can adversely impact intraoperative spine surgery, resulting in inaccurate positional information of the target region and unexpected damage during the operation. In this paper, we propose a novel deep learning architecture for respiratory motion prediction, which can adapt to different patients. The proposed method utilizes an LSTM-AE with attention mechanism network that can be trained using few-shot datasets during operation. To ensure real-time performance, a dimension reduction method based on the respiration-induced physical movement of spine vertebral bodies is introduced. The experiment collected data from prone-positioned patients under general anaesthesia to validate the prediction accuracy and time efficiency of the LSTM-AE-based motion prediction method. The experimental results demonstrate that the presented method (RMSE: 4.39%) outperforms other methods in terms of accuracy within a learning time of 2 min. The maximum predictive errors under the latency of 333 ms with respect to the x, y, and z axes of the optical camera system were 0.13, 0.07, and 0.10 mm, respectively, within a motion range of 2 mm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...