Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroimmune Pharmacol ; 19(1): 24, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780885

RESUMEN

Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aß1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1ß, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aß and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , FN-kappa B , Fragmentos de Péptidos , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/toxicidad , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Transducción de Señal/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , FN-kappa B/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos
2.
J Chromatogr Sci ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37873817

RESUMEN

Fructus Corni (F. Corni) is the dried mature pulp of Cornus officinalis Sieb. et Zucc.(Cornaceae), which is rich in iridoids. In this study, a simple, sensitive and rapid UPLC-MS/MS method was developed for the simultaneous determination of 13 iridoid glycosides of F. Corni from different areas. Specifically, we included five new compounds (cornusdiridoid C, cornusdiridoid E, cornusdiridoid F, 3'',5''-dehydroxycornuside and 2'-O-p-coumaroyl-kingiside) and isomers (2'-O-p-E-coumaroylloganin and 2'-O-p-Z-coumaroylloganin) for the first time in the quality markers of F. Corni. A total of 13 compounds and two pairs of isomers were well isolated and tested within just 14 min. All calibration curves showed good linear regression (r2 ≥ 0.99) within the tested concentration ranges. The limit of detection and limit of quantification were in the range of 0.19-1.90 and 0.38-3.76 ng/mL, respectively. The intra-day and inter-day precision were <3.21% and 12.49%, the RSD values of repeatability did not exceed 6.81% and the average recoveries were 90.95-113.59% for the analytes. All iridoid glycosides stabilized within 12 h (RSD < 10.99%). This method has been successfully applied to the quality evaluation of crude and processed F. Corni from different areas. The determination of characteristic iridoid glycosides and isomers will provide a more reliable and comprehensive method for the evaluation of F. Corni.

3.
Phytomedicine ; 120: 155061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689035

RESUMEN

BACKGROUND: The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE: This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS: We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS: According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS: This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.


Asunto(s)
Artritis , Asma , Flavonas , Anciano , Humanos , Estudios Prospectivos , Envejecimiento
4.
Med Res Rev ; 43(4): 1201-1252, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36899490

RESUMEN

Secoiridoids are natural products of cyclopentane monoterpene derivatives that are formed by splitting the rings of cyclomethene oxime compounds at C-7 and C-8, and only account for a small part of cyclic ether terpenoids. Because of the chemically active hemiacetal structure in their common basic skeleton, secoiridoids have a wide range of biological activities, such as neuroprotective, anti-inflammatory, antidiabetic, hepatoprotective, and antinociceptive activities. Phenolic secoiridoids can also act against multiple molecular targets involved in human tumorigenesis, making them potentially valuable precursors for antitumor drug development. This review provides a detailed update, covering relevant discoveries from January 2011 to December 2020, about the occurrence, structural diversity, bioactivities, and synthesis of naturally occurring secoiridoids. We aimed to resolve the lack of extensive, specific, and thorough review of secoiridoids, as well as open new areas for pharmacological investigation and better drugs based on these compounds.


Asunto(s)
Antineoplásicos , Iridoides , Humanos , Iridoides/farmacología , Iridoides/química , Fenoles , Antineoplásicos/farmacología , Antiinflamatorios
5.
Phytochemistry ; 210: 113648, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963707

RESUMEN

Six undescribed macrocyclic daphnane orthoesters, stelleratenoids A-F (1-6), were isolated from the roots of Stellera chamaejasme L. Their structures were elucidated by extensive spectroscopic analyses, including HRESIMS and NMR spectra. Compound 1 features an unusual terminal double bond at C-2/C-19 in the 1α-alkyldaphnane lactone skeleton. Compounds 2-4 are unique in the presence of different long chain fatty acyl groups. Compounds 5 and 6 are unique examples of modified macrocyclic daphnane diterpenoids. All the isolates were evaluated for anti-HIV activity in MT-2 cells. Among them, compounds 1, 5 and 6 exhibited highly potent anti-HIV activity with EC50 values of 66.70, 10.62 and 55.10 nM, respectively, possessing high potential to develop new anti-HIV drugs.


Asunto(s)
Diterpenos , Thymelaeaceae , Thymelaeaceae/química , Diterpenos/química , Espectroscopía de Resonancia Magnética , Raíces de Plantas/química
6.
Phytother Res ; 37(6): 2419-2436, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36781177

RESUMEN

Anti-Alzheimer's disease (AD) drugs can only change the symptoms of cognitive impairment in a short time but cannot prevent or completely cure AD. Thus, a more effective drug is urgently needed. Cornuside is extracted from Corni Fructus, a traditional Chinese medicine that plays an important role in treating dementia and other age-related diseases. Thus, the study aimed to explore the effects and mechanisms of Cornuside on the D-galactose (D-Gal) induced aging mice accompanied by cognitive decline. Initially, we found that Cornuside improved the learning and memory abilities of D-Gal-treated mice in behavioral experiments. Pharmacological experiments indicated that Cornuside acted on anti-oxidant and anti-inflammatory effects. Cornuside also reversed acetylcholin esterase (AChE) activity. Meanwhile, pathology tests showed that Cornuside had a protective effect on neuron damage. Cornuside increased the expression of brain-derived neurotrophic factor (BDNF), and down-regulated the expression of receptor for advanced glycosylation end products (RAGE), ionized calcium binding adapter molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) respectively. Further studies claimed that Cornuside had important effects on the expression of IκBα and extracellular signal-regulated kinases 1/2 (ERK1/2). These effects might be achieved through regulating the AGEs-RAGE-IκBα-ERK1/2 signaling pathway, among which, ERK1/2 might be the key protein. The study provides direct preclinical evidence for the research of Cornuside, which may become an excellent candidate drug for the treatment of aging-related AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/farmacología , Inhibidor NF-kappaB alfa/uso terapéutico , Transducción de Señal , Envejecimiento , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Encéfalo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Galactosa/efectos adversos
7.
Chem Biodivers ; 20(3): e202300013, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36752551

RESUMEN

Phytochemical investigation of the roots of Euphorbia ebracteolata Hayata resulted in the isolation of three new rosane diterpenoids, euphebracteolatins C-E (1-3), along with fourteen known analogs (4-17). Their structures were determined on the basis of extensive spectroscopic analysis including HR-ESI-MS, 1D and 2D NMR. Euphebracteolatin C (1) contains a C-1/C-10 double bond and a keto group at C-7, and euphebracteolatins D and E (2-3) possess an aromatic ring-A in their skeleton. The plausible biogenetic pathways of all the isolates were also proposed. Furthermore, compounds 1 and 9 showed selective cytotoxicity against HepG2 cells with IC50 values of 14.29 and 12.33 µM, respectively, and 2-3 displayed moderate cytotoxicity against three human cancer lines, with IC50 values ranging from 23.69 to 39.25 µM.


Asunto(s)
Diterpenos , Euphorbia , Humanos , Estructura Molecular , Euphorbia/química , Espectroscopía de Resonancia Magnética , Diterpenos/química , Raíces de Plantas/química
8.
J Ethnopharmacol ; 308: 116288, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36809822

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY: Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS: ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS: The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION: Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Ratones , Animales , Depresión/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones Endogámicos ICR , Antidepresivos/farmacología , Hipocampo , Hormona Adrenocorticotrópica , Sacarosa/metabolismo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad , Conducta Animal
9.
Phytomedicine ; 111: 154654, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689857

RESUMEN

BACKGROUND: Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS: The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS: According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS: Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Antraquinonas/farmacología , Antracenos/uso terapéutico , Neoplasias/tratamiento farmacológico
10.
Phytochemistry ; 206: 113526, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36442576

RESUMEN

Hypericum perforatum L. (Clusiaceae), commonly known as St. John's wort, has a rich historical background as one of the oldest and most widely studied herbal medicines. Hyperforin is the main antidepressant active ingredient of St. John's wort. In recent years, hyperforin has attached increasing attention due to its multiple pharmacological activities. In this review, the information on hyperforin was systematically summarized. Hyperforin is considered to be a lead compound with diverse pharmacological activities including anti-depression, anti-tumor, anti-dementia, anti-diabetes and others. It can be obtained by extraction and synthesis. Further pharmacological studies and more precise detection methods will help develop a value for hyperforin. In addition, structural modification and pharmaceutical preparation technology will be beneficial to promoting the research progress of hyperforin based innovative drugs. Although these works are full of known and unknown challenges, researchers are still expected to make hyperforin play a greater value.


Asunto(s)
Hypericum , Plantas Medicinales , Extractos Vegetales/química , Terpenos/farmacología , Antidepresivos/farmacología , Antidepresivos/química , Floroglucinol/farmacología , Hypericum/química , Compuestos Bicíclicos con Puentes
11.
Pharmacol Res ; 187: 106625, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563870

RESUMEN

Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Depresión/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Antidepresivos/uso terapéutico , Antidepresivos/farmacología
12.
Phytochemistry ; 204: 113446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152725

RESUMEN

The genus Datura has been used as an important traditional medicine in China, as well as in other countries worldwide. This review summarizes the latest progress and perspective of the genus Datura, from the aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology. Up to May 2022, literatures were collected from online scientific databases, including Google Scholar, PubMed, SciFinder, CNKI, ACS, and Web of Science, and information was also obtained from "Flora Republicae Populairs Sinicae", Chinese Pharmacopoeia, Chinese herbal classic books, and Ph.D. and M. Sc. dissertations. Studies on chemical constituents, pharmacological activities, and toxicity are mainly focused on D. metel, D. stramonium, and D. inoxia. Furthermore, 496 compounds have been discovered from the genus Datura, including withanolides, alkaloids, flavonoids, terpenoids, phenylpropanoids, steroids, amino acids, aromatics, and aliphatics. Among them, withanolides and alkaloids are two main active constituents. Pharmacological activities of extracts and compounds have been studied from the aspects of antitumor, antiinflammation, antioxidant, antimicrobial, antispasmodic, anticoagulant, analgesic, hypoglycemic and xanthine oxidase inhibitory activities, as well as the effects on central nervous system and immune system. Modern pharmacological studies have provided more clues to elucidate the traditional usages. The toxicity of the genus Datura is noteworthy, especially the potential toxicity on organs. This review would provide a comprehensive and constructive overview for new drug development and utilization of the genus Datura.

13.
Phytochemistry ; 204: 113448, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36154827

RESUMEN

Jolkinolide B is a typical ent-abietane-type diterpenoid, which is first found in Euphorbia jolkini. It is one of the most important active components in many toxic Euphorbia plants. In recent years, jolkinolide B has garnered increasing attention due to its high potent and multiple pharmacological activities. In order to better understand the research status of jolkinolide B, relevant information about jolkinolide B was collected from scientific databases (SciFinder Scholar, PubMed, ACS website, Elsevier, Web of Science, Google Scholar, Science Direct, and CNKI). There are few studies on chemical synthesis and biosynthesis of jolkinolide B. In addition, researchers on the activities of jolkinolide B are mostly concentrated at the cellular level, and there is a lack of research on the mechanism. In this review, the possible applications of jolkinolide B were systematically illustrated for the first time, from plant sources, physicochemical properties, analytical methods, synthesis and pharmacological activities. Jolkinolide B exhibits extensive pharmacological properties, including anticancer, anti-inflammatory, anti-osteoporosis, and anti-tuberculosis activities. Pharmacological activities of jolkinolide B were mainly focused on anticancer and anti-inflammatory activities, and the mechanism of action may be related with inhibition of JAK/STAT pathway, NF-κB pathway and PI3K/Akt/mTOR pathway. In addition, the extraction methods and analytical methods discussed in this review, will facilitate the development of novel herbal products for better healthcare solutions.

14.
Nutrients ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956355

RESUMEN

Cornuside is an iridoid glycoside from Cornus officinalis, with the activities of anti-inflammatory, antioxidant, anti-mitochondrial dysfunction, and neuroprotection. In the present research, a triple-transgenic mice model of AD (3 × Tg-AD) was used to explore the beneficial actions and potential mechanism of cornuside on the memory deficits. We found that cornuside prominently alleviated neuronal injuries, reduced amyloid plaque pathology, inhibited Tau phosphorylation, and repaired synaptic damage. Additionally, cornuside lowered the release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), lowered the level of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and the level of glutathione peroxidase (GSH-Px). Cornuside also significantly reduced the activation of astrocytes and modulated A1/A2 phenotypes by the AKT/Nrf2/NF-κB signaling pathway. We further confirmed that LY294002 and Nrf2 silencing could block the cornuside-mediated phenotypic switch of C6 cells induced by microglia conditioned medium (MCM) in response to lipopolysaccharide (LPS), which indicated that the effects of cornuside in astrocyte activation are dependent on AKT/Nrf2/NF-κB signaling. In conclusion, cornuside may regulate the phenotypic conversion of astrocytes, inhibit neuroinflammation and oxidative stress, improve synaptic plasticity, and alleviate cognitive impairment in mice through the AKT/Nrf2/NF-κB axis. Our present work provides an experimental foundation for further research and development of cornuside as a candidate drug for AD management.


Asunto(s)
Enfermedad de Alzheimer , Factor 2 Relacionado con NF-E2 , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Astrocitos/metabolismo , Glucósidos , Inflamación/metabolismo , Iridoides/farmacología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piranos
15.
Phytochemistry ; 203: 113399, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36027967

RESUMEN

Fourteen undescribed cassaine diterpenoids along with nine known ones were isolated from the seeds of Erythrophleum fordii Oliv. (Leguminosae). In addition, subsequent structural modification yielded ten derivatives. Their chemical structures were established by extensive spectroscopic methods and acid hydrolysis. All the diterpenoids were screened for their antiangiogenic activity using the human umbilical vein endothelial cell (HUVEC) model. Five compounds were active, of which three possessed excellent activity as their effect was better than that of the positive control (SU5416). The structure-activity relationship analysis revealed that the side chain at C-13 was the key part affecting the inhibitory effect. Further study demonstrated that 3ß-hydroxynorerythrosuamine-3-O-ß-D-glucopyranoside and the formate of 3ß-hydroxynorerythrosuamine-3-O-ß-D-glucopyranoside significantly inhibited a series of angiogenic processes including proliferation, migration and capillary-like structure formation of endothelial cells. These findings may provide a new type of antiangiogenic agent for future cancer drug development.


Asunto(s)
Antineoplásicos Fitogénicos , Diterpenos , Fabaceae , Abietanos , Alcaloides , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Fitogénicos/química , Diterpenos/química , Diterpenos/farmacología , Fabaceae/química , Formiatos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Estructura Molecular , Semillas
16.
Neurochem Int ; 159: 105390, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810915

RESUMEN

Though a great many of studies on the development of antidepressants for the therapy of major depression disorder (MDD) and the development of antidepressants have been carried out, there still lacks an efficient approach in clinical practice. The involvement of Sigma-1 receptor in the pathological process of MDD has been verified. In this review, recent research focusing on the role of Sigma-1 receptor in the etiology of MDD were summarized. Preclinical studies and clinical trials have found that stress induce the variation of Sigma-1 receptor in the blood, brain and heart. Dysfunction and absence of Sigma-1 receptor result in depressive-like behaviors in rodent animals. Agonists of Sigma-1 receptor show not only antidepressant-like activities but also therapeutical effects in complications of depression. The mechanisms underlying antidepressant-like effects of Sigma-1 receptor may include suppressing neuroinflammation, regulating neurotransmitters, ameliorating brain-derived neurotrophic factor and N-Methyl-D-Aspartate receptor, and alleviating the endoplasmic reticulum stress and mitochondria damage during stress. Therefore, Sigma-1 receptor represents a potential target for antidepressants development.


Asunto(s)
Trastorno Depresivo Mayor , Receptores sigma , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato , Receptores sigma/agonistas , Receptor Sigma-1
17.
Phytochemistry ; 202: 113304, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35803305

RESUMEN

A phytochemical investigation of the roots of Euphorbia fischeriana Steud. led to the isolation of eleven undescribed gallotannins, fishertannins A-K, together with four known analogues. Their structures were elucidated by the comprehensive spectroscopic data including UV, IR, HR-ESI-MS, and NMR, while the absolute configurations of the sugar moiety were determined by the acid hydrolysis and HPLC analyses. Fishertannin A possessed an unusual skeleton comprised of acetophenone, galloyl group, arabinofuranosyl and glucopyranosyl moieties. Fishertannin B, fishertannin H, fishertannin K, 1,2,3-tri-O-galloyl-ß-D-glucopyranose, 3,4,6-tri-O-galloyl-D-glucopyranose, and 1,6-di-O-galloyl-ß-D-glucopyranose displayed the potent α-glucosidase inhibitory activities with the IC50 values of 15.48-177.13 µM. Examination of the structure-activity relationships (SAR) demonstrated that the galloyl and glucopyranosyl moieties played a key role in the inhibitory activity for both α-glucosidase and α-amylase inhibitory activity. Among all isolates, 1,2,3-tri-O-galloyl-ß-D-glucopyranose showed the most potent and highly specific inhibitory activity against α-glucosidase with an IC50 value of 15.48 ± 0.60 µM. The kinetic analysis of 1,2,3-tri-O-galloyl-ß-D-glucopyranose disclosed the mixed inhibition type on α-glucosidase, and the molecular docking visualized the stable binding with the catalytic pocket of α-glucosidase (pdb 3A4A). These findings indicated the excellent antidiabetic potential of the gallotannins from E. fischeriana, while 1,2,3-tri-O-galloyl-ß-D-glucopyranose could be developed as a promising candidate for the treatment of T2DM with fewer side effects.


Asunto(s)
Euphorbia , Euphorbia/química , Taninos Hidrolizables/química , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo
18.
Eur J Med Chem ; 240: 114600, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35863273

RESUMEN

Spermidine alkaloids are a kind of natural products possessing an aliphatic triamine structure with three or four methylene groups between two N-atoms. Spermidine alkaloids exist in plants, microorganisms, and marine organisms, which usually form amide structures with cinnamic acid or fatty acid derivatives. Their unique structures showed a wide range of biological activities such as neuroprotective, anti-aging, anti-cancer, antioxidant, anti-inflammatory, and antimicrobial. In order to better understand the research status of spermidine alkaloids and promote their applications in human health, this paper systematically reviewed the biological sources, structures, pharmacological actions, and synthetic processes of spermidine alkaloids over the past two decades. This will help to open up new pharmacological investigation fields and better drug design based on these spermidine alkaloids.


Asunto(s)
Alcaloides , Antiinfecciosos , Productos Biológicos , Neoplasias , Alcaloides/química , Alcaloides/farmacología , Antiinfecciosos/farmacología , Productos Biológicos/química , Humanos , Espermidina/química , Espermidina/farmacología
19.
Phytother Res ; 36(6): 2272-2299, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35583806

RESUMEN

Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.


Asunto(s)
Cornus , Iridoides , Transducción de Señal , Cornus/química , Humanos , Iridoides/farmacocinética , Iridoides/farmacología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología
20.
J Ethnopharmacol ; 293: 115252, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405255

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis Sieb. et Zucc., traditional Chinese medicine, has been widely used in the treatment of dementia. Cornel iridoid glycosides of Cornus officinalis is therapeutic to Alzheimer's disease (AD), while its pharmacodynamic material basis is not clear. Cornuside, an iridoid glycoside extracted from of Cornus officinalis Sieb. et Zucc, might be a potential anti-AD candidate. AIM OF THE STUDY: Cornuside was evaluated for its effect on scopolamine induced AD mice, and its action mechanisms were explored. MATERIALS AND METHODS: ICR mice were administered with 1 mg/kg scopolamine intraperitoneally to induce amnesia. The therapeutic effect of cornuside of cognitive function was evaluated via series of behavioral tests, including Morris water maze test, step-through test and step-down test. In addition, specific enzyme reaction tests were used to detect the content of acetylcholine (ACh) and malondialdehyde (MDA), as well as the activities of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), choline acetyltransferase (ChAT), superoxide dismutase (SOD), catalase (CAT), monoamine oxidase (MAO) in the brain. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). RESULTS: Cornuside ameliorated the spatial memory impairment in Morris water maze test and cognitive disruption in step-through and step-down test. Furthermore, cornuside improved the level of ACh by reducing the activities of AChE and BuChE, and increasing the activity of ChAT in hippocampus. Cornuside also increased the levels of monoamine neurotransmitters by inhibiting MAO activity in hippocampus and cortex. In addition, cornuside attenuated MDA by enhancing the activities of SOD and CAT in hippocampus and cortex. CONCLUSION: Cornuside improved cognitive dysfunction induced by scopolamine in behavioral tests. The mechanisms of cornuside were further investigated from the aspects of neurotransmitters and oxidative stress. Cornuside could inhibit oxidative stress and neurotransmitter hydrolases, increase ACh and monoamine neurotransmitters, which finally contributed to its therapeutic effect on scopolamine induced amnesia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Acetilcolina/farmacología , Acetilcolinesterasa/metabolismo , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Animales , Butirilcolinesterasa , Colina O-Acetiltransferasa/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Glucósidos , Hipocampo , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos ICR , Monoaminooxidasa , Neurotransmisores , Estrés Oxidativo , Piranos , Escopolamina/farmacología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...