Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 134(3): 252-265, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166470

RESUMEN

BACKGROUND: Intracellular Ca2+ cycling determines myocardial contraction and relaxation in response to physiological demands. SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) is responsible for the sequestration of cytosolic Ca2+ into intracellular stores during cardiac relaxation, and its activity is reversibly inhibited by PLN (phospholamban). However, the regulatory hierarchy of SERCA2a activity remains unclear. METHODS: Cardiomyocyte-specific ZBTB20 knockout mice were generated by crossing ZBTB20flox mice with Myh6-Cre mice. Echocardiography, blood pressure measurements, Langendorff perfusion, histological analysis and immunohistochemistry, quantitative reverse transcription-PCR, Western blot analysis, electrophysiological measurements, and chromatin immunoprecipitation assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: Specific ablation of ZBTB20 in cardiomyocyte led to a significant increase in basal myocardial contractile parameters both in vivo and in vitro, accompanied by an impairment in cardiac reserve and exercise capacity. Moreover, the cardiomyocytes lacking ZBTB20 showed an increase in sarcoplasmic reticular Ca2+ content and exhibited a remarkable enhancement in both SERCA2a activity and electrically stimulated contraction. Mechanistically, PLN expression was dramatically reduced in cardiomyocytes at the mRNA and protein levels by ZBTB20 deletion or silencing, and PLN overexpression could largely restore the basal contractility in ZBTB20-deficient cardiomyocytes. CONCLUSIONS: These data point to ZBTB20 as a fine-tuning modulator of PLN expression and SERCA2a activity, thereby offering new perspective on the regulation of basal contractility in the mammalian heart.


Asunto(s)
Miocardio , Retículo Sarcoplasmático , Animales , Ratones , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Mamíferos , Ratones Noqueados , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
2.
Nat Commun ; 14(1): 7934, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040719

RESUMEN

Arginase, a manganese (Mn)-dependent enzyme, is indispensable for urea generation and ammonia disposal in the liver. The potential role of fructose in Mn and ammonia metabolism is undefined. Here we demonstrate that fructose overconsumption impairs hepatic Mn homeostasis and ammonia disposal in male mice. Fructose overexposure reduces liver Mn content as well as its activity of arginase and Mn-SOD, and impairs the clearance of blood ammonia under liver dysfunction. Mechanistically, fructose activates the Mn exporter Slc30a10 gene transcription in the liver in a ChREBP-dependent manner. Hepatic overexpression of Slc30a10 can mimic the effect of fructose on liver Mn content and ammonia disposal. Hepatocyte-specific deletion of Slc30a10 or ChREBP increases liver Mn contents and arginase activity, and abolishes their responsiveness to fructose. Collectively, our data establish a role of fructose in hepatic Mn and ammonia metabolism through ChREBP/Slc30a10 pathway, and postulate fructose dietary restriction for the prevention and treatment of hyperammonemia.


Asunto(s)
Fructosa , Manganeso , Masculino , Ratones , Animales , Manganeso/toxicidad , Manganeso/metabolismo , Fructosa/metabolismo , Amoníaco/metabolismo , Arginasa/genética , Arginasa/metabolismo , Hígado/metabolismo , Factores de Transcripción/metabolismo , Homeostasis
3.
Nat Commun ; 14(1): 6469, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833289

RESUMEN

Niemann-Pick C1-like 1 (NPC1L1) is essential for intestinal cholesterol absorption. Together with the cholesterol-rich and Flotillin-positive membrane microdomain, NPC1L1 is internalized via clathrin-mediated endocytosis and transported to endocytic recycling compartment (ERC). When ERC cholesterol level decreases, NPC1L1 interacts with LIMA1 and moves back to plasma membrane. However, how cholesterol leaves ERC is unknown. Here, we find that, in male mice, intracellular bile acids facilitate cholesterol transport to other organelles, such as endoplasmic reticulum, in a non-micellar fashion. When cholesterol level in ERC is decreased by bile acids, the NPC1L1 carboxyl terminus that previously interacts with the cholesterol-rich membranes via the A1272LAL residues dissociates from membrane, exposing the Q1277KR motif for LIMA1 recruitment. Then NPC1L1 moves back to plasma membrane. This study demonstrates an intracellular cholesterol transport function of bile acids and explains how the substantial amount of cholesterol in NPC1L1-positive compartments is unloaded in enterocytes during cholesterol absorption.


Asunto(s)
Colesterol , Proteínas de Transporte de Membrana , Animales , Masculino , Ratones , Transporte Biológico , Membrana Celular/metabolismo , Colesterol/metabolismo , Absorción Intestinal , Proteínas de Transporte de Membrana/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279265

RESUMEN

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Animales , Ratones , Cóclea/metabolismo , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mamíferos , Ganglio Espiral de la Cóclea , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biochem Biophys Res Commun ; 658: 128-135, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37030067

RESUMEN

Very long-chain fatty acid elongase 3 (ELOVL3) catalyzes the synthesis of C20-C24 fatty acids and is highly expressed in the liver and adipose tissues. The deficiency of Elovl3 exhibits an anti-obesity effect in mice, but the specific role of hepatic ELOVL3 in lipid metabolism remains unclear. Here we demonstrate that hepatic Elovl3 is not required for lipid homeostasis or the pathogenesis of diet-induced obesity and hepatic steatosis. We generated Elovl3 liver-specific knockout mice via Cre/LoxP approach, which maintained normal expression of ELOVL1 or ELOVL7 in the liver. Unexpectedly, the mutant mice did not show significant abnormalities in body weight, liver mass and morphology, liver triglyceride content, or glucose tolerance when fed normal chow or even a low-fat diet. Moreover, deletion of hepatic Elovl3 did not significantly affect body weight gain or hepatic steatosis induced by high-fat diet. Lipidomic analysis revealed that the lipid profiles were not significantly altered by the loss of hepatic Elovl3. Unlike its global knockouts, the mice lacking Elovl3 specifically in liver displayed normal expression of genes involved in hepatic de novo lipogenesis, lipid uptake, or beta-oxidation at the mRNA and protein levels. Collectively, our data indicate that hepatic ELOVL3 is dispensable for metabolic homeostasis or diet-induced metabolic disease.


Asunto(s)
Hígado Graso , Metabolismo de los Lípidos , Ratones , Animales , Hígado/metabolismo , Hígado Graso/metabolismo , Obesidad/metabolismo , Lipogénesis/genética , Peso Corporal , Triglicéridos/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL
6.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36964915

RESUMEN

Fructose intolerance in mammals is caused by defects in fructose absorption and metabolism. Fructose-1,6-bisphosphatase 1 (FBP1) is a key enzyme in gluconeogenesis, and its deficiency results in hypoglycemia as well as intolerance to fructose. However, the mechanism about fructose intolerance caused by FBP1 deficiency has not been fully elucidated. Here, we demonstrate that hepatic but not intestinal FBP1 is required for fructose metabolism and tolerance. We generated inducible knockout mouse models specifically lacking FBP1 in adult intestine or liver. Intestine-specific deletion of Fbp1 in adult mice does not compromise fructose tolerance, as evidenced by no significant body weight loss, food intake reduction, or morphological changes of the small intestine during 4 weeks of exposure to a high-fructose diet. By contrast, liver-specific deletion of Fbp1 in adult mice leads to fructose intolerance, as manifested by substantial weight loss, hepatomegaly, and liver injury after exposure to a high-fructose diet. Notably, the fructose metabolite fructose-1-phosphate is accumulated in FBP1-deficient liver after fructose challenge, which indicates a defect of fructolysis, probably due to competitive inhibition by fructose-1,6-bisphosphate and may account for the fructose intolerance. In conclusion, these data have clarified the essential role of hepatic but not intestinal FBP1 in fructose metabolism and tolerance.


Asunto(s)
Intolerancia a la Fructosa , Fructosa , Animales , Ratones , Fructosa-Bifosfatasa/genética , Gluconeogénesis/genética , Intestinos , Hígado , Mamíferos
7.
Diabetes ; 72(5): 562-574, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36724137

RESUMEN

Thyroid hormone (TH) has a profound effect on energy metabolism and systemic homeostasis. Adipose tissues are crucial for maintaining whole-body homeostasis; however, whether TH regulates systemic metabolic homeostasis through its action on adipose tissues is unclear. Here, we demonstrate that systemic administration of triiodothyronine (T3), the active form of TH, affects both inguinal white adipose tissue (iWAT) and whole-body metabolism. Taking advantage of the mouse model lacking adipocyte TH receptor (TR) α or TRß, we show that TRß is the major TR isoform that mediates T3 action on the expression of genes involved in multiple metabolic pathways in iWAT, including glucose uptake and use, de novo fatty acid synthesis, and both UCP1-dependent and -independent thermogenesis. Moreover, our results indicate that glucose-responsive lipogenic transcription factor in iWAT is regulated by T3, thereby being critically involved in T3-regulated glucose and lipid metabolism and energy dissipation. Mice with adipocyte TRß deficiency are susceptible to diet-induced obesity and metabolic dysregulation, suggesting that TRß in adipocytes may be a potential target for metabolic diseases. ARTICLE HIGHLIGHTS: How thyroid hormone (TH) achieves its diverse biological activities in the regulation of metabolism is not fully understood. Whether TH regulates systemic metabolic homeostasis via its action on white adipose tissue is unclear. Adipocyte TH receptor (TR) ß mediates the triiodothyronine effect on multiple metabolic pathways by targeting glucose-responsive lipogenic transcription factor in white adipose tissue; mice lacking adipocyte TRß are susceptible to high-fat diet-induced metabolic abnormalities. TRß in white adipocytes controls intracellular and systemic metabolism and may be a potential target for metabolic diseases.


Asunto(s)
Metabolismo de los Lípidos , Triyodotironina , Ratones , Animales , Triyodotironina/farmacología , Metabolismo de los Lípidos/genética , Glucosa , Hormonas Tiroideas/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Factores de Transcripción/metabolismo , Homeostasis , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Adipocitos Blancos/metabolismo
8.
Endocrinology ; 163(12)2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36288554

RESUMEN

Lactotropes are prolactin (PRL)-secreting endocrine cells in the anterior pituitary. We have established the zinc finger protein ZBTB20 as an essential transcription factor for lactotrope specification, the disruption of which results in complete loss of lactotropes in mice. However, the potential role of ZBTB20 in mature lactotropes remains unclear. Here we demonstrate that ZBTB20 acts as a critical cell-autonomous regulator for PRL expression in mature lactotropes in adult mice. Via a CRISPR/Cas9 approach, we first generated a tamoxifen-inducible Prl-CreER knockin mouse line that could efficiently mediate gene recombination specifically in lactotropes. Conditional deletion of the Zbtb20 gene specifically in mature lactotropes at adulthood led to a substantial decrease in PRL levels both in the pituitary and in plasma, without significant alterations of lactotrope relative density in the pituitary from male or female mice. Furthermore, conditional disruption of Zbtb20 in adult female mice did not significantly change pregnancy-elicited lactotrope expansion, but caused an impaired mammary gland expansion and lactation due to the PRL defect. Thus, our data point to an important role of ZBTB20 in regulating PRL expression and lactotrope function at adulthood.


Asunto(s)
Adenohipófisis , Prolactina , Embarazo , Ratones , Femenino , Masculino , Animales , Prolactina/genética , Prolactina/metabolismo , Factores de Transcripción/metabolismo , Hipófisis/metabolismo , Unión Proteica , Regulación de la Expresión Génica , Adenohipófisis/metabolismo
9.
Int J Obes (Lond) ; 46(5): 1068-1075, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152269

RESUMEN

OBJECTIVES: Brown adipose tissue (BAT) plays a critical role in energy expenditure by uncoupling protein 1 (UCP1)-mediated thermogenesis and represents an important therapeutic target for metabolic diseases. Carbohydrate response element-binding protein (ChREBP) is a key transcription factor regulating de novo lipogenesis, and its activity is associated with UCP1 expression and thermogenesis in BAT. However, the exact physiological role of endogenous ChREBP in BAT thermogenesis remains unclear. METHODS: We used the Cre/LoxP system to generate ChREBP BAT-specific knockout mice, and examined their BAT thermogenesis under acute cold exposure and long-term cold acclimation. Gene expression was analyzed at the mRNA and protein levels, and lipogenesis was examined by 3H-H2O incorporation assay. RESULTS: The mice lacking ChREBP specifically in BAT displayed a significant decrease in the expression levels of lipogenic genes and the activity of de novo lipogenesis in BAT after cold exposure, with UCP1 expression decreased under thermoneutral conditions or after acute cold exposure but not chronic cold acclimation. Unexpectedly, BAT-specific ChREBP deletion did not significantly affect body temperature as well as local temperature or morphology of BAT after acute cold exposure or chronic cold acclimation. Of note, ChREBP deletion mildly aggravated glucose intolerance induced by a high-fat diet. CONCLUSIONS: Our work indicates that ChREBP regulates de novo lipogenesis in BAT and glucose tolerance, but is not required for non-shivering thermogenesis by BAT under acute or long-term cold exposure.


Asunto(s)
Tejido Adiposo Pardo , Lipogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Frío , Metabolismo Energético/fisiología , Ratones , Ratones Noqueados , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
Hepatology ; 75(5): 1169-1180, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580885

RESUMEN

BACKGROUND AND AIMS: Lipoprotein lipase (LPL) is responsible for the lipolytic processing of triglyceride-rich lipoproteins, the deficiency of which causes severe hypertriglyceridemia. Liver LPL expression is high in suckling rodents but relatively low at adulthood. However, the regulatory mechanism and functional significance of liver LPL expression are incompletely understood. We have established the zinc finger protein ZBTB20 as a critical factor for hepatic lipogenesis. Here, we evaluated the role of ZBTB20 in regulating liver Lpl gene transcription and plasma triglyceride metabolism. APPROACH AND RESULTS: Hepatocyte-specific inactivation of ZBTB20 in mice led to a remarkable increase in LPL expression at the mRNA and protein levels in adult liver, in which LPL protein was mainly localized onto sinusoidal epithelial cells and Kupffer cells. As a result, the LPL activity in postheparin plasma was substantially increased, and postprandial plasma triglyceride clearance was significantly enhanced, whereas plasma triglyceride levels were decreased. The dysregulated liver LPL expression and low plasma triglyceride levels in ZBTB20-deficient mice were normalized by inactivating hepatic LPL expression. ZBTB20 deficiency protected the mice against high-fat diet-induced hyperlipidemia without causing excessive triglyceride accumulation in the liver. Chromatin immunoprecipitation and gel-shift assay studies revealed that ZBTB20 binds to the LPL promoter in the liver. A luciferase reporter assay revealed that ZBTB20 inhibits the transcriptional activity of LPL promoter. The regulation of LPL expression by ZBTB20 is liver-specific under physiological conditions. CONCLUSIONS: Liver ZBTB20 serves as a key regulator of LPL expression and plasma triglyceride metabolism and could be a therapeutic target for hypertriglyceridemia.


Asunto(s)
Dominio BTB-POZ , Hipertrigliceridemia , Animales , Hepatocitos/metabolismo , Hipertrigliceridemia/etiología , Hipertrigliceridemia/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Ratones , Factores de Transcripción/metabolismo , Transcripción Genética , Triglicéridos/metabolismo , Dedos de Zinc
11.
Chin Med J (Engl) ; 134(11): 1276-1285, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010200

RESUMEN

ABSTRACT: Excessive consumption of fructose, the sweetest of all naturally occurring carbohydrates, has been linked to worldwide epidemics of metabolic diseases in humans, and it is considered an independent risk factor for cardiovascular diseases. We provide an overview about the features of fructose metabolism, as well as potential mechanisms by which excessive fructose intake is associated with the pathogenesis of metabolic diseases both in humans and rodents. To accomplish this aim, we focus on illuminating the cellular and molecular mechanisms of fructose metabolism as well as its signaling effects on metabolic and cardiovascular homeostasis in health and disease, highlighting the role of carbohydrate-responsive element-binding protein in regulating fructose metabolism.


Asunto(s)
Fructosa , Enfermedades Metabólicas , Fructosa/efectos adversos , Homeostasis , Humanos , Enfermedades Metabólicas/etiología
12.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833046

RESUMEN

Diverse gene products contribute to the pathogenesis of Alzheimer's disease (AD). Experimental models have helped elucidate their mechanisms and impact on brain functions. Human amyloid precursor protein (hAPP) transgenic mice from line J20 (hAPP-J20 mice) are widely used to simulate key aspects of AD. However, they also carry an insertional mutation in noncoding sequence of one Zbtb20 allele, a gene involved in neural development. We demonstrate that heterozygous hAPP-J20 mice have reduced Zbtb20 expression in some AD-relevant brain regions, but not others, and that Zbtb20 levels are higher in hAPP-J20 mice than heterozygous Zbtb20 knock-out (Zbtb20+/-) mice. Whereas hAPP-J20 mice have premature mortality, severe deficits in learning and memory, other behavioral alterations, and prominent nonconvulsive epileptiform activity, Zbtb20+/- mice do not. Thus, the insertional mutation in hAPP-J20 mice does not ablate the affected Zbtb20 allele and is unlikely to account for the AD-like phenotype of this model.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Factores de Transcripción
13.
Front Med (Lausanne) ; 8: 626554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748159

RESUMEN

Recent studies have shown that ZBTB20, a zinc-finger protein containing transcription factor, is highly expressed in small-diameter primary sensory neurons in mice, and modulates pain through regulating TRP channels. However, whether ZBTB20 regulates itch sensation has not been demonstrated. In this study, small-diameter primary sensory neuron-specific ZBTB20 knockout (PN-ZB20KO) mice were used to investigate the role of ZBTB20 in the regulation of itch sensation. First, both histamine-dependent and non-histamine-dependent itch behaviors induced by injection of histamine and chloroquine (CQ) into the cheek were significantly diminished in PN-ZB20KO mice. Second, double immunohistochemistry showed that ZBTB20 was mainly expressed in CGRP-labeled small peptidergic neurons and was expressed at low levels in IB4-labeled small non-peptidergic and NF200-labeled large neurons in the trigeminal ganglia (TG). ZBTB20 was also expressed in most TRPV1+ and TRPA1+ neurons and to a lesser extent in TRPM8+ neurons in the TG. Furthermore, cheek injection of histamine and CQ enhanced the mRNA expression of TRPV1 and TRPA1 but not TRPM8 in the TG. Moreover, TRPV1 and TRPA1 knockout (KO) mice exhibited attenuation of itch behavior induced by histamine and CQ, respectively. Finally, silencing endogenous ZBTB20 with recombinant lentivirus expressing a short hairpin RNA against ZBTB20 (LV-shZBTB20) in TG neurons attenuated histamine- and non-histamine-induced itch and downregulated TRP channels in the TG. Our study suggests that ZBTB20 plays an important role in mediating itch in small primary sensory neurons.

14.
FASEB J ; 34(10): 13862-13876, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32844471

RESUMEN

The zinc-finger protein ZBTB20 regulates development and metabolism in multiple systems, and is essential for postnatal survival in mice. However, its potential role in the cardiovascular system remains undefined. Here, we demonstrate that ZBTB20 is critically involved in the regulation of cardiac contractility and blood pressure in mice. At the age of 16 days, the relatively healthy Zbtb20-null mice exhibited hypotension without obvious change of heart rate or other evidence for heart failure. Moreover, Zbtb20 deletion led to a marked reduction in heart size, left ventricular wall thickness, and cell size of cardiomyocytes, which was largely proportional to the decreased body growth. Notably, echocardiographic and hemodynamic analyses showed that cardiac contractility was greatly impaired in the absence of ZBTB20. Mechanistically, ZBTB20 deficiency decreased cardiac ATP contents, and compromised the enzyme activity of mitochondrial complex I in heart as well as L-type calcium current density in cardiomyocytes. Furthermore, the developmental activation of some mitochondrial function-related genes was significantly attenuated in Zbtb20-null myocardium, which included Hspb8, Ckmt2, Cox7a1, Tfrc, and Ogdhl. Put together, these results suggest that ZBTB20 plays a crucial role in the regulation of heart development, energy metabolism, and contractility.


Asunto(s)
Cardiopatías/genética , Hipotensión/genética , Contracción Miocárdica , Factores de Transcripción/genética , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio , Células Cultivadas , Forma Mitocondrial de la Creatina-Quinasa/genética , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Cardiopatías/metabolismo , Cardiopatías/patología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipotensión/metabolismo , Hipotensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Función Ventricular , Remodelación Ventricular
15.
J Endocrinol ; 245(3): 343-356, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32208359

RESUMEN

Brown adipose tissue (BAT) plays a critical role in energy expenditure by uncoupling protein 1 (UCP1)-mediated thermogenesis. Carbohydrate response element-binding protein (ChREBP) is one of the key transcription factors regulating de novo lipogenesis (DNL). As a constitutively active form, ChREBP-ß is expressed at extremely low levels. Up to date, its functional relevance in BAT remains unclear. In this study, we show that ChREBP-ß inhibits BAT thermogenesis. BAT ChREBP-ß mRNA levels were elevated upon cold exposure, which prompted us to generate a mouse model overexpressing ChREBP-ß specifically in BAT using the Cre/LoxP approach. ChREBP-ß overexpression led to a whitening phenotype of BAT at room temperature, as evidenced by increased lipid droplet size and decreased mitochondrion content. Moreover, BAT thermogenesis was inhibited upon acute cold exposure, and its metabolic remodeling induced by long-term cold adaptation was significantly impaired by ChREBP-ß overexpression. Mechanistically, ChREBP-ß overexpression downregulated expression of genes involved in mitochondrial biogenesis, autophagy, and respiration. Furthermore, thermogenic gene expression (e.g. Dio2, UCP1) was markedly inhibited in BAT by the overexpressed ChREBP-ß. Put together, our work points to ChREBP-ß as a negative regulator of thermogenesis in brown adipocytes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Animales , Autofagia/fisiología , Metabolismo Energético/fisiología , Lipogénesis/fisiología , Ratones , Mitocondrias/metabolismo , Obesidad/metabolismo , Termogénesis/genética , Termogénesis/fisiología , Factores de Transcripción/metabolismo
16.
Diabetes ; 69(4): 591-602, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31974143

RESUMEN

Excessive fructose consumption is closely linked to the pathogenesis of metabolic disease. Carbohydrate response element-binding protein (ChREBP) is a transcription factor essential for fructose tolerance in mice. However, the functional significance of liver ChREBP in fructose metabolism remains unclear. Here, we show that liver ChREBP protects mice against fructose-induced hepatotoxicity by regulating liver glycogen metabolism and ATP homeostasis. Liver-specific ablation of ChREBP did not compromise fructose tolerance, but rather caused severe transaminitis and hepatomegaly with massive glycogen overload in mice fed a high-fructose diet, while no obvious inflammation, cell death, or fibrosis was detected in the liver. In addition, liver ATP contents were significantly decreased by ChREBP deficiency in the fed state, which was rendered more pronounced by fructose feeding. Mechanistically, liver contents of glucose-6-phosphate (G6P), an allosteric activator of glycogen synthase, were markedly increased in the absence of liver ChREBP, while fasting-induced glycogen breakdown was not compromised. Furthermore, hepatic overexpression of LPK, a ChREBP target gene in glycolysis, could effectively rescue glycogen overload and ATP reduction, as well as mitigate fructose-induced hepatotoxicity in ChREBP-deficient mice. Taken together, our findings establish a critical role of liver ChREBP in coping with hepatic fructose stress and protecting from hepatotoxicity by regulating LPK.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Fructosa/toxicidad , Glucosa/metabolismo , Glucógeno/metabolismo , Hígado/metabolismo , Piruvato Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucólisis/fisiología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados
17.
Proc Natl Acad Sci U S A ; 117(5): 2473-2483, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31941714

RESUMEN

Neddylation is a ubiquitination-like pathway that controls cell survival and proliferation by covalently conjugating NEDD8 to lysines in specific substrate proteins. However, the physiological role of neddylation in mammalian metabolism remains elusive, and no mitochondrial targets have been identified. Here, we report that mouse models with liver-specific deficiency of NEDD8 or ubiquitin-like modifier activating enzyme 3 (UBA3), the catalytic subunit of the NEDD8-activating enzyme, exhibit neonatal death with spontaneous fatty liver as well as hepatic cellular senescence. In particular, liver-specific UBA3 deficiency leads to systemic abnormalities similar to glutaric aciduria type II (GA-II), a rare autosomal recessive inherited fatty acid oxidation disorder resulting from defects in mitochondrial electron transfer flavoproteins (ETFs: ETFA and ETFB) or the corresponding ubiquinone oxidoreductase. Neddylation inhibition by various strategies results in decreased protein levels of ETFs in neonatal livers and embryonic hepatocytes. Hepatic neddylation also enhances ETF expression in adult mice and prevents fasting-induced steatosis and mortality. Interestingly, neddylation is active in hepatic mitochondria. ETFs are neddylation substrates, and neddylation stabilizes ETFs by inhibiting their ubiquitination and degradation. Moreover, certain mutations of ETFs found in GA-II patients hinder the neddylation of these substrates. Taken together, our results reveal substrates for neddylation and add insight into GA-II.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Animales , Flavoproteínas Transportadoras de Electrones/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Oxidación-Reducción , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Cell Death Dis ; 9(5): 462, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29700307

RESUMEN

Liver has a unique regenerative capacity, however, its regulatory mechanism is not fully defined. We have established the zinc-finger protein ZBTB20 as a key transcriptional repressor for alpha-fetoprotein (AFP) gene in liver. As a marker of hepatic differentiation, AFP expression is closely associated with hepatocyte proliferation. Unexpectedly, here we showed that ZBTB20 acts as a positive regulator of hepatic replication and is required for efficient liver regeneration. The mice specifically lacking ZBTB20 in hepatocytes exhibited a remarkable defect in liver regeneration after partial hepatectomy, which was characterized by impaired hepatocyte proliferation along with delayed cyclin D1 induction and diminished AKT activation. Furthermore, we found that epithelial growth factor receptor (EGFR) expression was dramatically reduced in the liver in the absence of ZBTB20, thereby substantially attenuating the activation of EGFR signaling pathway in regenerating liver. Adenovirus-mediated EGFR overexpression in ZBTB20-deficient hepatocytes could largely restore AKT activation in response to EGFR ligands in vitro, as well as hepatocyte replication in liver regeneration. Furthermore, ZBTB20 overexpression could significantly restore hepatic EGFR expression and cell proliferation after hepatectomy in ZBTB20-deficient liver. Taken together, our data point to ZBTB20 as a critical regulator of EGFR expression and hepatocyte proliferation in mouse liver regeneration, and may serve as a potential therapeutic target in clinical settings of liver regeneration.


Asunto(s)
Proliferación Celular , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Regeneración Hepática , Hígado/metabolismo , Factores de Transcripción/metabolismo , Animales , Receptores ErbB/genética , Hepatocitos/patología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , Factores de Transcripción/genética
19.
J Vis Exp ; (129)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29286362

RESUMEN

The pituitary gland or hypophysis is an important endocrine organ secreting hormones essential for homeostasis. It consists of two glands with separate embryonic origins and functions - the neurohypophysis and the adenohypophysis. The developing mouse pituitary gland is tiny and delicate with an elongated oval shape. A coronal section is preferred to display both the adenohypophysis and neurohypophysis in a single slice of the mouse pituitary. The goal of this protocol is to achieve proper pituitary coronal sections with well-preserved tissue architectures from developing mice. In this protocol, we describe in detail how to dissect and process pituitary glands properly from developing mice. First, mice are fixed by transcardial perfusion of formaldehyde prior to dissection. Then three different dissecting techniques are applied to obtain intact pituitary glands depending on the age of mice. For fetal mice aged embryonic days (E) 17.5 - 18.5 and neonates up to 4 days, the entire sella regions including the sphenoid bone, gland, and trigeminal nerves are dissected. For pups aged postnatal days (P) 5 - 14, the pituitary glands connected with trigeminal nerves are dissected as a whole. For mice over 3 weeks old, the pituitary glands are carefully dissected free from the surrounding tissues. We also display how to embed the pituitary glands in a proper orientation by using the surrounding tissues as landmarks to obtain satisfying coronal sections. These methods are useful in analyzing histological and developmental features of pituitary glands in developing mice.


Asunto(s)
Disección/métodos , Hipófisis/embriología , Hipófisis/cirugía , Animales , Embrión de Mamíferos/cirugía , Ratones , Hipófisis/patología
20.
Nat Commun ; 8: 14824, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327662

RESUMEN

Hepatic de novo lipogenesis (DNL) converts carbohydrates into triglycerides and is known to influence systemic lipid homoeostasis. Here, we demonstrate that the zinc finger protein Zbtb20 is required for DNL. Mice lacking Zbtb20 in the liver exhibit hypolipidemia and reduced levels of liver triglycerides, along with impaired hepatic lipogenesis. The expression of genes involved in glycolysis and DNL, including that of two ChREBP isoforms, is decreased in livers of knockout mice. Zbtb20 binds to and enhances the activity of the ChREBP-α promoter, suggesting that altered metabolic gene expression is mainly driven by ChREBP. In addition, ChREBP-ß overexpression largely restores hepatic expression of genes involved in glucose and lipid metabolism, and increases plasma and liver triglyceride levels in knockout mice. Finally, we show that Zbtb20 ablation protects from diet-induced liver steatosis and improves hepatic insulin resistance. We suggest ZBTB20 is an essential regulator of hepatic lipogenesis and may be a therapeutic target for the treatment of fatty liver disease.


Asunto(s)
Lipogénesis , Hígado/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Carbohidratos/química , Núcleo Celular/metabolismo , Carbohidratos de la Dieta , Hígado Graso/genética , Hígado Graso/patología , Eliminación de Gen , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucólisis , Homeostasis , Humanos , Resistencia a la Insulina , Lipogénesis/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Factores de Transcripción/deficiencia , Transcripción Genética , Triglicéridos/sangre , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...