Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.018
Filtrar
1.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764119

RESUMEN

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura , Ratones Endogámicos C57BL , Neuronas , Animales , Masculino , Ratones , Neuronas/metabolismo , Corteza Sensoriomotora/metabolismo , Humanos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Corteza Motora/metabolismo , Corteza Somatosensorial/metabolismo
2.
J Matern Fetal Neonatal Med ; 37(1): 2337708, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38735865

RESUMEN

BACKGROUND: Presently, the efficacy of neonatal resuscitation techniques via interventions such as oral, nasal, and endotracheal suction for preventing meconium aspiration syndrome (MAS) after delivery has not been satisfactory. OBJECTIVE: This study aimed to investigate the role of intratracheal instillation of budesonide on oxidative stress in MAS. METHODS: Sixty-two neonates with MAS admitted to Huai'an Maternity and Child Healthcare Hospital from January 2018 to June 2020 were divided into a study group (intratracheal instillation of 2 ml budesonide suspension; n = 31) and a control group (intratracheal instillation of 2 ml normal saline; n = 31). Collect data from two groups of patients and evaluate clinical outcomes, including oxygenation index (OI), as well as serum total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI) and 8-Isoprostane before treatment and 72h after admission. RESULTS: We found no statistical differences in mortality, complication rate, total oxygen inhalation time, OI before treatment and 72h after admission between the two groups of neonates with MAS, while the duration of invasive respiratory support in the study group was significantly shorter than in the control group. Also, serum TAC, TOS, OSI and 8-isoprostane levels were not statistically different before treatment between the two groups. After 72h of admission, OSI and 8-Isoprostane in neonates with MAS in the study group were much lower than those in the control group. TOS, OSI, 8-Isoprostane in the control group and 8-Isoprostane in the study group were significantly higher than those before treatment. As for TAC and TOS, no significant differences were observed between the two groups. CONCLUSION: Intratracheal instillation of budesonide was shown to alleviate oxidative stress and shorten invasive ventilation time in neonates with MAS.


Asunto(s)
Budesonida , Dinoprost/análogos & derivados , Síndrome de Aspiración de Meconio , Estrés Oxidativo , Humanos , Síndrome de Aspiración de Meconio/tratamiento farmacológico , Recién Nacido , Estrés Oxidativo/efectos de los fármacos , Budesonida/administración & dosificación , Femenino , Masculino , Solución Salina/administración & dosificación , Instilación de Medicamentos , Estudios de Casos y Controles
3.
Artículo en Inglés | MEDLINE | ID: mdl-38728127

RESUMEN

Real-life graphs often exhibit intricate dynamics that evolve continuously over time. To effectively represent continuous-time dynamic graphs (CTDGs), various temporal graph neural networks (TGNNs) have been developed to model their dynamics and topological structures in Euclidean space. Despite their notable achievements, the performance of Euclidean-based TGNNs is limited and bounded by the representation capabilities of Euclidean geometry, particularly for complex graphs with hierarchical and power-law structures. This is because Euclidean space does not have enough room (its volume grows polynomially with respect to radius) to learn hierarchical structures that expand exponentially. As a result, this leads to high-distortion embeddings and suboptimal temporal graph representations. To break the limitations and enhance the representation capabilities of TGNNs, in this article, we propose a scalable and effective TGNN with hyperbolic geometries for CTDG representation (called STGNh ). It captures evolving behaviors and stores hierarchical structures simultaneously by integrating a memory-based module and a structure-based module into a unified framework, which can scale to billion-scale graphs. Concretely, a simple hyperbolic update gate (HuG) is designed as the memory-based module to store temporal dynamics efficiently; for the structure-based module, we propose an effective hyperbolic temporal Transformer (HyT) model to capture complex graph structures and generate up-to-date node embeddings. Extensive experimental results on a variety of medium-scale and billion-scale graphs demonstrate the superiority of the proposed STGNh for CTDG representation, as it significantly outperforms baselines in various downstream tasks.

4.
PeerJ ; 12: e17356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766485

RESUMEN

Background: Hepatic stellate cell (HSC) activation and hepatic fibrosis mediated biliary atresia (BA) development, but the underlying molecular mechanisms are poorly understood. This study aimed to investigate the roles of circRNA hsa_circ_0009096 in the regulation of HSC proliferation and hepatic fibrosis. Methods: A cellular hepatic fibrosis model was established by treating LX-2 cells with transforming growth factor ß (TGF-ß1). RNaseR and actinomycin D assays were performed to detect hsa_circ_0009096 stability. Expression of hsa_circ_0009096, miR-370-3p, and target genes was detected using reverse transcription-qPCR. Direct binding of hsa_circ_0009096 to miR-370-3p was validated using dual luciferase reporter assay. Cell cycle progression and apoptosis of LX-2 cells were assessed using flow cytometry. The alpha-smooth muscle actin (α-SMA), collagen 1A1 (COL1A1), and TGF beta receptor 2 (TGFBR2) protein levels in LX-2 cells were analyzed using immunocytochemistry and western blotting. Results: Hsa_circ_0009096 exhibited more resistance to RNase R and actinomycinD digestion than UTRN mRNA. Hsa_circ_0009096 expression increased significantly in LX-2 cells treated with TGF-ß1, accompanied by elevated α-SMA and COL1A1 expression. Hsa_circ_0009096 siRNAs effectively promoted miR-370-3p and suppressed TGFBR2 expression in LX-2 cells, mediated by direct association of hsa_circ_0009096 with miR-370-3p. Hsa_circ_0009096 siRNA interfered with the cell cycle progression, promoted apoptosis, and reduced α-SMA and COL1A1 expression in LX-2 cells treated with TGF-ß1. MiR-370-3p inhibitors mitigated the alterations in cell cycle progression, apoptosis, and α-SMA, COL1A1, and TGFBR2 expression in LX-2 cells caused by hsa_circ_0009096 siRNA. In conclusion, hsa_circ_0009096 promoted HSC proliferation and hepatic fibrosis during BA pathogenesis by accelerating TGFBR2 expression by sponging miR-370-3p.


Asunto(s)
Atresia Biliar , Proliferación Celular , Células Estrelladas Hepáticas , Cirrosis Hepática , MicroARNs , ARN Circular , Receptor Tipo II de Factor de Crecimiento Transformador beta , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Atresia Biliar/patología , Atresia Biliar/genética , Atresia Biliar/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Apoptosis , Línea Celular , Actinas/metabolismo , Actinas/genética , Cadena alfa 1 del Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética
5.
Sci Rep ; 14(1): 11050, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745054

RESUMEN

Phosphorus (P) is a crucial macronutrient for plant growth and development. Basic metabolic processes regulate growth; however, the molecular detail of these pathways under low phosphorous (LP) in wheat is still unclear. This study aims to elucidate the varied regulatory pathways responses to LP stress in wheat genotypes. Phenotypic, physiological, and transcriptome analyses were conducted on Fielder (P efficient) and Ardito (P inefficient) wheat genotypes after four days of normal phosphorous (NP) and LP stress. In response to LP, Fielder outperformed Ardito, displaying higher chlorophyll content-SPAD values (13%), plant height (45%), stem diameter (12%), shoot dry weight (42%), and root biomass (75%). Root structure analysis revealed that Fielder had greater total root length (50%), surface area (56%), volume (15%), and diameter (4%) than Ardito under LP. These findings highlight Fielder's superior performance and adaptation to LP stress. Transcriptome analysis of wheat genotype roots identified 3029 differentially expressed genes (DEGs) in Fielder and 1430 in Ardito, highlighting LP-induced changes. Key DEGs include acid phosphatases (PAPs), phosphate transporters (PHT1 and PHO1), SPX, and transcription factors (MYB, bHLH, and WRKY). KEGG enrichment analysis revealed key pathways like plant hormones signal transduction, biosynthesis of secondary metabolites, and carbohydrate biosynthesis metabolism. This study unveils crucial genes and the intricate regulatory process in wheat's response to LP stress, offering genetic insights for enhancing plant P utilization efficiency.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Fósforo , Raíces de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Fósforo/deficiencia , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Adaptación Fisiológica/genética , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenotipo
6.
J Hazard Mater ; 472: 134514, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38718511

RESUMEN

The removal of crude oil from spent hydrodesulfurization catalysts constitutes the preliminary stage in the recovery process of valuable metals. However, the traditional roasting method for the removal exhibits massive limitations. In view of this, the present study used an ultrasound-assisted surfactant cleaning method to remove crude oil from spent hydrodesulfurization catalysts, which demonstrated effectiveness. Furthermore, the study investigated the mechanism governing the process with calculation and experiments, so as to provide a comprehensive understanding of the cleaning method's efficacy. The surfactant selection was predicated on the performance in the IFT test, with SDBS and TX-100 finally being chosen. Subsequent calculations and analysis were then conducted to elucidate their frontier molecular orbitals, electrostatic potential, and polarity. It has been found that both SDBS and TX-100 possess the smallest LUMO-HOMO energy gap (ΔE), registering at 4.91 eV and 4.80 eV, respectively, and presenting the highest interfacial reactivity. The hydrophilic structure in the surfactant regulates the wettability of the oil-water interface, and the long-chain alkanes have excellent non-polar properties that promote the dissolution of crude oil. The ultrasonic-assisted process further improves the interface properties and enhances the oil removal effect. Surprisingly, the crude oil residue was reduced to 0.25% under optimal conditions. The final phase entailed the techno-economic evaluation of the entire process, revealing that, in comparison to the roasting method, this process saves $0.38 per kilogram of spent HDS catalyst, with the advantages of operational simplicity and emission-free. Generally, this study shed new light on the realization of efficient oil removal, with the salience of green, sustainable, and economical.

7.
Heliyon ; 10(9): e30415, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707431

RESUMEN

Background: Altered brain-derived neurotrophic factor (BDNF) concentrations have been detected in the central nervous system tissues and peripheral blood. These alterations are associated with a series of neurological disorders. Objective: To investigate the potential causal relationships between genetically determined plasma BDNF levels and various neurological diseases using a two-sample Mendelian randomisation study. Methods: We selected single nucleotide polymorphisms strongly related to plasma BDNF levels as instrumental variables. Within the Mendelian randomisation framework, we used summary-level statistics for exposure (plasma BDNF levels) and outcomes (neurological disorders). Results: We observed suggestive evidence of a relation between higher plasma BDNF levels and less risk of nontraumatic intracranial haemorrhage (nITH) (odds ratio [OR] = 0.861, 95 % confidence interval [CI]: 0.774-0.958, P = 0.006, PFDR = 0.078), epilepsy (OR = 0.927, 95 % CI: 0.880-0.976, P = 0.004, PFDR = 0.078), focal epilepsy (OR = 0.928, 95 % CI: 0.874-0.986, P = 0.016, PFDR = 0.139), and non-lesional focal epilepsy (OR = 0.981, 95 % CI: 0.964-0.999, P = 0.041, PFDR = 0.267). Combined with the UK Biobank dataset, the association of plasma BDNF levels with nITH remained significant (OR = 0.88, 95 % CI: 0.81-0.96, P < 0.01). The combined analysis of three consortium datasets demonstrated a considerable impact of plasma BDNF on epilepsy (OR = 0.94, 95 % CI: 0.90-0.98, P < 0.01) and a suggestive impact on focal epilepsy (OR = 0.94, 95 % CI: 0.89-0.99, P = 0.02). However, there was no apparent correlation between plasma BDNF levels and other neurological disorders or related subtypes. Conclusions: Our study supports a possible causal relationship between elevated plasma BDNF levels and a reduced risk of nITH, epilepsy, and focal epilepsy.

9.
Cell Biochem Funct ; 42(3): e3999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571320

RESUMEN

Intratumoral microbiota (ITM) are microorganisms present in tumor cells. ITM participate in tumor development by affecting tumor cells directly and the tumor microenvironment (TME), indirectly. Alterations in ITM instigate changes in tumor DNA, activate oncogenic pathways, induce tumor inflammatory responses, disrupt normal immune activity, and facilitate the secretion of effectors leading to tumor progression, metastasis, or diminished therapeutic effects. ITM varies significantly in different types of cancer cells and disease states. The presence of certain ITM serves as a predictor of various disease states. Thus, ITM predicts tumorigenesis, tumor grade, treatment efficacy, and prognosis, making it a potential tumor biomarker. The present study aimed to determine the mechanisms by which ITM affects tumor development, especially through the TME; highlight the significant potential of ITM in enhancing tumor diagnosis and prognosis; and outline future directions for ITM research, with a focus on the development of innovative tumor markers.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Carcinogénesis , Microambiente Tumoral
10.
Exp Hematol Oncol ; 13(1): 43, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637863

RESUMEN

Chimeric antigen receptors (CAR) are engineered fusion proteins that target T-cells to specific surface antigens of tumor cells to generate effective anti-tumor responses. CAR T-cell therapy is playing an increasingly important role in the treatment of relapsed/refractory B-cell malignancies (R/R BCM). Attempting to make CAR T-cells safer and more effective in treating R/R BCM, various novel engineered CAR T-cell agents are currently in the research and development or clinical trial stages. We have summarized here the latest reports on the novel CAR T-cell therapies for R/R BCM presented at the 2023 ASH Annual Meeting as well as the latest updates in related clinical trials.

11.
J Phys Chem Lett ; 15(16): 4342-4350, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38619464

RESUMEN

Ultrasmall fluorescent nanomaterials have been widely studied as novel fluorescent probes; however, these nanomaterials are prone to structural damage or aggregation, and the sensitivity and accuracy of most single emission fluorescence probes were very low. Therefore, the controlled synthesis of stable dual-emission ratiometric fluorescence ultrasmall assembly probes still remains a challenge. Herein, star-like polymer unimolecular micelles were utilized as a scaffold template to encapsulate fluorescent ultrasmall carbon quantum dots (CQDs) and gold nanoclusters (AuNCs) via the polymer template directed self-assembly strategy to obtain multiple-responsive ratiometric fluorescent assemblies. The assemblies were ultrastable, well-defined, and nearly monodispersed with controlled size, regular morphology, and pH- and thermal-responsiveness. The assemblies can be applied to realize rapid, sensitive, quantitative, and specific detection of Cu2+ and GSH. Moreover, the convenient rapid real-time detection was realized via the combination of the visualized paper-based sensor, and the multilevel information encryption was also achieved.

12.
J Colloid Interface Sci ; 667: 192-198, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636221

RESUMEN

Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.

13.
Cell Commun Signal ; 22(1): 232, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637851

RESUMEN

Metastasis poses a major challenge in colorectal cancer (CRC) treatment and remains a primary cause of mortality among patients with CRC. Recent investigations have elucidated the involvement of disrupted gut microbiota homeostasis in various facets of CRC metastasis, exerting a pivotal influence in shaping the metastatic microenvironment, triggering epithelial-mesenchymal transition (EMT), and so on. Moreover, therapeutic interventions targeting the gut microbiota demonstrate promise in enhancing the efficacy of conventional treatments for metastatic CRC (mCRC), presenting novel avenues for mCRC clinical management. Grounded in the "seed and soil" hypothesis, this review consolidates insights into the mechanisms by which imbalanced gut microbiota promotes mCRC and highlights recent strides in leveraging gut microbiota modulation for the clinical prevention and treatment of mCRC. Emphasis is placed on the considerable potential of manipulating gut microbiota within clinical settings for managing mCRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales/patología , Microambiente Tumoral
14.
Front Nutr ; 11: 1364866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638295

RESUMEN

Liver transplantation is an effective measure to treat adult-onset type II citrullinemia (CTLN2). Active and effective perioperative nutrition support is a very important treatment for the prognosis of such patients. In this paper, we analyzed the process, results, and outcome of nutritional support therapy in a case of CTLN2, and concluded that the perioperative nutritional support program for CTLN2 patients should be followed prior to surgery:1.because of the prevalence of severe malnutrition in CTLN2 patients, Enteral nutrition (EN) combined with Parenteral nutrition (PN) should be the first choice for nutritional support; 2. daily energy intake should be 35 ~ 40 kcal/kg; 3. the nutritional formula should be composed of low-carbohydrates and high medium-chain triglyceride (MCT). Postoperative: initiating EN as soon as possible is recommended to restore intestinal function and adjuvant PN might be taken into consideration in the early stage. The purpose of this case was to provide experience for the development and adjustment of the perioperative nutritional support regimen for CTLN2 patients.

15.
Med Acupunct ; 36(2): 79-86, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659726

RESUMEN

Objective: Ear acupuncture, as a system for treating and preventing diseases through stimulation of points on the auricle, has been systematically introduced during the last 60 years. Although the auricular cartography was described somatotopically as an inverted fetus by Paul Nogier, MD, the underlying mechanism of auricular stimulation remains unclear. The aim of this research was to gain an understanding of the structural basis of auricular stimulation, as well as showing the distribution of the nerve fibers, and the blood and lymphatic vessels. Materials and Methods: The distribution of nerve fibers, and blood and lymphatic vessels was examined in whole-mount auricular skins of mice by combining the biomarkers protein gene product 9.5, cluster of differentiation 31, and lymphatic-vessel endothelial hyaluronan receptor-1 following tissue-clearing treatment with multiple immunofluorescent staining. Results: The labeled nerve fibers, and the blood and lymphatic vessels were distributed extensively in the inner and outer parts of the auricular skin. Auricular nerves aligning with blood vessels ran from the basal region to the peripheral region and crossed over lymphatic vessels, thus forming the neural, vascular, and lymphatic networks. Conclusions: As these are important tissue components of auricular skin, this result implies that the auricular nerve fibers, and blood and lymphatic vessels may coordinate with each other to respond directly to auricular stimulation.

16.
Regen Ther ; 27: 342-353, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38645281

RESUMEN

Background: One of the key obstacles to the healing of diabetic wound is the persistence of active inflammation. We previously demonstrated the potential of cell-free fat extract (CEFFE) to promote the healing of diabetic wounds, and annexin A5 (A5) is a crucial anti-inflammatory protein within CEFFE. This study aimed to evaluate the therapeutic potential of A5 in diabetic wounds. Methods: A5 was loaded into GelMA hydrogels and applied to skin wounds of diabetic mice in vivo. The diabetic wounds with the treatment of GelMA-A5 were observed for 14 days and evaluated by histological analysis. Accessment of inflammation regulation were conducted through anti-CD68 staining, anti-CD86 and anti-CD206 staining, and qRT-PCR of wound tissue. In presence of A5, macrophages stimulated by lipopolysaccharide (LPS) in vitro, and detected through qRT-PCR, flow cytometry, and immunocytofluorescence staining. Besides, epithelial cells were co-cultured with A5 for epithelialization regulation by CCK-8 assay and cell migration assay. Results: A5 could promote diabetic wound healing and regulate inflammations by promoting the transition of macrophages from M1 to M2 phenotype. In vitro experiments demonstrated that A5 exerted a significant effect on reducing pro-inflammatory factors and inhibiting the polarization of macrophages from M0 toward M1 phenotype. A5 significantly promoted the migration of epithelial cells. Conclusion: Annexin A5 has a significant impact on the regulation of macrophage inflammation and promotion of epithelialization.

17.
Sci Rep ; 14(1): 7702, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565593

RESUMEN

Utrophin (UTRN), known as a tumor suppressor, potentially regulates tumor development and the immune microenvironment. However, its impact on breast cancer's development and treatment remains unstudied. We conducted a thorough examination of UTRN using both bioinformatic and in vitro experiments in this study. We discovered UTRN expression decreased in breast cancer compared to standard samples. High UTRN expression correlated with better prognosis. Drug sensitivity tests and RT-qPCR assays revealed UTRN's pivotal role in tamoxifen resistance. Furthermore, the Kruskal-Wallis rank test indicated UTRN's potential as a valuable diagnostic biomarker for breast cancer and its utility in detecting T stage of breast cancer. Additionally, our results demonstrated UTRN's close association with immune cells, inhibitors, stimulators, receptors, and chemokines in breast cancer (BRCA). This research provides a novel perspective on UTRN's role in breast cancer's prognostic and therapeutic value. Low UTRN expression may contribute to tamoxifen resistance and a poor prognosis. Specifically, UTRN can improve clinical decision-making and raise the diagnosis accuracy of breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Utrofina/metabolismo , Ratones Endogámicos mdx , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Biomarcadores , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Pronóstico , Microambiente Tumoral
18.
Front Pharmacol ; 15: 1337749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666026

RESUMEN

(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.

19.
Arch Microbiol ; 206(5): 232, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658486

RESUMEN

Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.


Asunto(s)
Antiinflamatorios no Esteroideos , Biotransformación , Ibuprofeno , Naproxeno , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Antiinflamatorios no Esteroideos/metabolismo , Biodegradación Ambiental
20.
Int Immunopharmacol ; 133: 112124, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38663312

RESUMEN

The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.


Asunto(s)
Acetilcoenzima A , Diferenciación Celular , Lipopolisacáridos , Células Madre Mesenquimatosas , Osteogénesis , Animales , Osteogénesis/efectos de los fármacos , Acetilcoenzima A/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/efectos de los fármacos , Acetilación , Células Cultivadas , Ratas , Masculino , Ratas Sprague-Dawley , ATP Citrato (pro-S)-Liasa/metabolismo , Acetiltransferasas/metabolismo , Acetiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...