Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Exp Eye Res ; 243: 109907, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649019

RESUMEN

Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.


Asunto(s)
Ritmo Circadiano , Ratones Endogámicos C57BL , Retina , Privación de Sueño , Transcriptoma , Animales , Privación de Sueño/fisiopatología , Privación de Sueño/metabolismo , Privación de Sueño/genética , Ratones , Ritmo Circadiano/fisiología , Masculino , Retina/metabolismo , Retina/fisiopatología , Modelos Animales de Enfermedad , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Electrorretinografía , Regulación de la Expresión Génica , Enfermedad Crónica
2.
Materials (Basel) ; 17(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591524

RESUMEN

The physical and mechanical properties of recycled coarse aggregate (RCA) are worse than those of natural coarse aggregate (NCA), and the overall performance of recycled concrete prepared from RCA is worse than that of natural aggregate concrete. Treatment of RCA by CO2-accelerated carbonation effectively improves the macroscopic properties of RCA. The degree of influence of raw material factors, i.e., the original concrete strength (OCS) and initial moisture content (IMC) of RCA, on the carbonation of RCAs is very complex. Herein, an accelerated carbonation experiment for RCA with different material factors as variables was carried out to explore the influence of the abovementioned factors on the physical properties of carbonated recycled coarse aggregate (CRCA). By analyzing the microstructure of the RCA with the best modification effect before and after carbonation, the carbonation modification mechanism of the RCA was revealed. The physical performance indexes, including the apparent density, water absorption and carbonation rate, of the dried RCA with an OCS of C40 and C50 were significantly improved. The research results can provide basic data and theoretical support for promoting the popularization and application of RCA and recycled concrete in practical engineering.

3.
Adv Mater ; : e2311025, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427593

RESUMEN

Perovskite solar cells (PSCs) have attracted widespread research and commercialization attention because of their high power conversion efficiency (PCE) and low fabrication cost. The long-term stability of PSCs should satisfy industrial requirements for photovoltaic devices. Inverted PSCs with a p-i-n architecture exhibit considerable advantages because of their excellent stability and competitive efficiency. The continuously broken-through PCE of inverted PSCs shows huge application potential. This review summarizes the developments and outlines the characteristics of inverted PSCs including charge transport layers (CTLs), perovskite compositions, and interfacial regulation strategies. The latest effective CTLs, interfacial modification, and stability promotion strategies especially under light, thermal, and bias conditions are emphatically analyzed. Furthermore, the applications of the inverted structure in high-efficiency and stable tandem, flexible photovoltaic devices, and modules and their main obstacles are systematically introduced. Finally, the remaining challenges faced by inverted devices are discussed, and several directions for advancing inverted PSCs are proposed according to their development status and industrialization requirements.

4.
Environ Int ; 185: 108549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447453

RESUMEN

Universal access to clean fuels in household use is one explicit indicator of sustainable development while currently still billions of people rely on solid fuels for daily cooking. Despite of the recognized clean transition trend in general, disparities in household energy mix in different activities (e.g. cooking and heating) and historical trends remain to be elucidated. In this study, we revealed the historical changing trend of the disparity in household cooking and heating activities and associated carbon emissions in rural China. The study found that the poor had higher total direct energy consumption but used less modern energy, especially in cooking activities, in which the poor consumed 60 % more energy than the rich. The disparity in modern household energy use decreased over time, but conversely the disparity in total residential energy consumption increased due to the different energy elasticities as income increases. Though per-capita household CO2 and Black Carbon (BC) emissions were decreasing under switching to modern energies, the disparity in household CO2 and BC deepened over time, and the low-income groups emitted âˆ¼ 10 kg CO2 more compared to the high-income population. Relying solely on spontaneous clean cooking transition had limited impacts in reducing disparities in household energy and carbon emissions, whereas improving access to modern energy had substantial potential to reduce energy consumption and carbon emissions and its disparity. Differentiated energy-related policies to promote high-efficiency modern heating energies affordable for the low-income population should be developed to reduce the disparity, and consequently benefit human health and climate change equally.


Asunto(s)
Contaminación del Aire Interior , Carbono , Humanos , Dióxido de Carbono , Composición Familiar , Factores Socioeconómicos , China , Población Rural , Culinaria , Contaminación del Aire Interior/análisis
5.
J Genet Genomics ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38423503

RESUMEN

Identical-by-descent (IBD) is a fundamental genomic characteristic in population genetics and has been widely used for population history reconstruction. However, limited by the nature of IBD, which could only capture the relationship between two individuals/haplotypes, existing IBD-based history inference is constrained to two populations. In this study, we propose a novel framework by leveraging IBD sharing in multi-population and develop a method, MatrixIBD, to reconstruct recent multi-population migration history. Specifically, we employ the structured coalescent theory to precisely model the genealogical process and then estimate the IBD sharing across multiple populations. Within our model, we establish a theoretical connection between migration history and IBD sharing. Our method is rigorously evaluated through simulations, revealing its remarkable accuracy and robustness. Furthermore, we apply MatrixIBD to Central and South Asia in the Human Genome Diversity Project and successfully reconstruct the recent migration history of three closely related populations in South Asia. By taking into account the IBD sharing across multiple populations simultaneously, MatrixIBD enables us to attain clearer and more comprehensive insights into the history of regions characterized by complex migration dynamics. This approach provides a holistic perspective on intricate patterns embedded within the recent population migration history.

6.
BMC Infect Dis ; 24(1): 116, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254025

RESUMEN

OBJECTIVE: This study aimed to explore the characteristics of carbapenem-resistant Enterobacterales (CRE) patients in the intensive care unit (ICU) in different regions of Henan Province to provide evidence for the targeted prevention and treatment of CRE. METHODS: This was a cross-sectional study. CRE screening was conducted in the ICUs of 78 hospitals in Henan Province, China, on March 10, 2021. The patients were divided into provincial capital hospitals and nonprovincial capital hospitals for comparative analysis. RESULTS: This study involved 1009 patients in total, of whom 241 were CRE-positive patients, 92 were in the provincial capital hospital and 149 were in the nonprovincial capital hospital. Provincial capital hospitals had a higher rate of CRE positivity, and there was a significant difference in the rate of CRE positivity between the two groups. The body temperature; immunosuppressed state; transfer from the ICU to other hospitals; and use of enemas, arterial catheters, carbapenems, or tigecycline at the provincial capital hospital were greater than those at the nonprovincial capital hospital (P < 0.05). However, there was no significant difference in the distribution of carbapenemase strains or enzymes between the two groups. CONCLUSIONS: The detection rate of CRE was significantly greater in provincial capital hospitals than in nonprovincial capital hospitals. The source of the patients, invasive procedures, and use of advanced antibiotics may account for the differences. Carbapenem-resistant Klebsiella pneumoniae (CR-KPN) was the most prevalent strain. Klebsiella pneumoniae carbapenemase (KPC) was the predominant carbapenemase enzyme. The distributions of carbapenemase strains and enzymes were similar in different regions.


Asunto(s)
Antibacterianos , Temperatura Corporal , Humanos , Estudios Transversales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cánula , Carbapenémicos/farmacología , Klebsiella pneumoniae
7.
Materials (Basel) ; 17(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38255592

RESUMEN

Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(ß-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder Company. The effects of different modifiers on improving the flowability of ultrafine silicon carbide slurry were investigated by means of viscosity tests, sedimentation experiments, and SEM observations. Their modification mechanisms were investigated by means of zeta potential tests, XPS tests, and so on. In this paper, the initial modification of SiC was carried out with KH792, followed by the secondary modification with anionic and cationic modifiers (tetramethylammonium hydroxide and sodium humate), and the optimal modification conditions were investigated by means of a viscosity test, which showed that the lowest viscosity of the modified SiC reached 0.076 Pa·s and that the absolute maximum value of the zeta potential increased from 47.5 at the time of no modification to 63.7 (maximum values) at the time of modification. This means it has an improved surface charge, which improves dispersion. The adsorption results of the modifier on the silicon carbide surface were also demonstrated by the XPS test results.

8.
Technol Health Care ; 32(2): 573-583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37393445

RESUMEN

BACKGROUND: Cells adherence provides specific information about physiology and pathology, the adhesion measurement between living cells and nanostructures can be measured by atomic force microscopy, but this detection technique is difficult to operate and costly. The adhesion height and effective contact area between cells and substrates are also the key factors affecting measurement value of the overall impedance. These factors change with structural parameters of the substrates, so the adhesion measurement between living cells and substrate can be indirectly reflected by the impedance value. OBJECTIVE: To establish a mapping relationship between the impedance measurement and the adhesion measurement of living cells. The possibility of dynamic measurement of adhesion is realized by this method, and the experimental process is simplified. METHODS: Laser interference technology was used to prepare nanoarray structures with different periods on the surface of silicon wafers for cells culture. Under the same experimental conditions, the impedance of living cells on the substrates of different cycle sizes were measured. The adhesion between cells and different substrates were analyzed by measuring impedance after the interaction between cells and substrate. RESULTS: The adhesion of living cells on the substrates of different sizes be analyzed, and the mapping relationship between the impedance and the adhesion measurement was established. The results showed that, the larger the impedance value between cells and substrate, the larger the effective contact area and the smaller the gap between them. CONCLUSION: The difference of adhesion height and effective adhesion area between living cells and substrates were obtained. This paper, a new method to measure the adhesion properties of living cells is presented, which provides theoretical basis for the related research.


Asunto(s)
Impedancia Eléctrica , Humanos , Células Cultivadas
9.
Biotechnol Bioeng ; 121(2): 551-565, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921467

RESUMEN

Clostridium butyricum is a probiotic that forms anaerobic spores and plays a crucial role in regulating gut microbiota. However, the total viable cell count and spore yield of C. butyricum in industrial production are comparatively low. To this end, we investigated the metabolic characteristics of the strain and proposed three distinct pH regulation strategies for enhancing spore production. In addition, precise measurement of fermentation parameters such as substrate concentration, total viable cell count, and spore concentration is crucial for successful industrial probiotics production. Nevertheless, online measurement of these intricate parameters in the fermentation of C. butyricum poses a considerable challenge owing to the complex, nonlinear, multivariate, and strongly coupled characteristics of the production process. Therefore, we analyzed the capacitance and conductivity acquired from a viable cell sensor as the core parameters for the fermentation process. Subsequently, a robust soft sensor was developed using a seven-input back-propagation neural network model with input variables of fermentation time, capacitance, conductivity, pH, initial total sugar concentration, ammonium ion concentration, and calcium ion concentration. The model enables the online monitoring of total viable biomass count, substrate concentrations, and spore yield, and can be extended to similar fermentation processes with pH changes as a characteristic feature.


Asunto(s)
Clostridium butyricum , Clostridium butyricum/metabolismo , Esporas Bacterianas , Fermentación , Redes Neurales de la Computación , Concentración de Iones de Hidrógeno
10.
Langmuir ; 39(45): 16151-16162, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37910769

RESUMEN

This study presented a novel modification method for fine SiC powder by using sodium lignosulfonate as a dispersant. The adsorption behavior of sodium lignosulfonate on the SiC/water interface and its effect on the performance of a fine SiC slurry were systematically investigated. The adsorption results showed that sodium lignosulfonate formed monolayer adsorption on the surface of fine SiC and that the saturated adsorption capacity was 1.3263 mg/g. The adsorption reached equilibrium within 3 h and was mainly controlled by active sites on the SiC surface. The dispersion, stability, and zeta potential of modified SiC powder were improved after sodium lignosulfonate adsorption. The zeta potential of modified SiC reached a minimum value of -44.8 mV at pH 12. Modified SiC suspensions had great stability in a wider pH range of 6-12. Modified SiC slurry with 54 vol % solid loading had a low viscosity of 173 mPa·s at pH 10. Subsequently, coarse SiC powder was added for slip casting. A mixed slurry with high solid loading (69 vol %) and low viscosity (583 mPa·s) was prepared using modified SiC and coarse SiC powders at a mass ratio of 2:3. Finally, recrystallized SiC green body with high density (2.6492 g/cm3) was obtained.

11.
Heliyon ; 9(10): e20609, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916095

RESUMEN

Auroras are bright occurrences when high-energy particles from the magnetosphere and solar wind enter Earth's atmosphere through the magnetic field and collide with atoms in the upper atmosphere. The morphological and temporal characteristics of auroras are essential for studying large-scale magnetospheric processes. While auroras are visible to the naked eye from the ground, scientists use deep learning algorithms to analyze all-sky images to understand this phenomenon better. However, the current algorithms face challenges due to inefficient utilization of global features and neglect the excellent fusion of local and global feature representations extracted from aurora images. Hence, this paper introduces a Hash-Transformer model based on Vision Transformer for aurora retrieval from all-sky images. Experimental results based on real-world data demonstrate that the proposed method effectively improves aurora image retrieval performance. It provides a new avenue to study aurora phenomena and facilitates the development of related fields.

12.
Nat Commun ; 14(1): 6262, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805547

RESUMEN

Plant height is a key agronomic trait that affects yield and is controlled by both phytohormone gibberellin (GA) and ultraviolet-B (UV-B) irradiation. However, whether and how plant height is modulated by UV-B-mediated changes in GA metabolism are not well understood. It has not been reported that the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) is involved in the regulation of plant growth in response to environmental factors. We perform a forward genetic screen in soybean and find that a mutation in Glycine max Increased Leaf Petiole Angle1 (GmILPA1), encoding a subunit of the APC/C, lead to dwarfism under UV-B irradiation. UV-B promotes the accumulation of GmILPA1, which ubiquitinate the GA catabolic enzyme GA2 OXIDASE-like (GmGA2ox-like), resulting in its degradation in a UV-B-dependent manner. Another E3 ligase, GmUBL1, also ubiquitinate GmGA2ox-like and enhance the GmILPA1-mediated degradation of GmGA2ox-like, which suggest that GmILPA1-GmGA2ox-like module counteract the UV-B-mediated reduction of bioactive GAs. We also determine that GmILPA1 is a target of selection during soybean domestication and breeding. The deletion (Indel-665) in the promoter might facilitate the adaptation of soybean to high UV-B irradiation. This study indicates that an evolutionary GmILPA1 variant has the capability to develop ideal plant architecture with soybean cultivars.


Asunto(s)
Glycine max , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Giberelinas , Fitomejoramiento , Ciclosoma-Complejo Promotor de la Anafase , Plantas/metabolismo , Hojas de la Planta/metabolismo
13.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895963

RESUMEN

Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mechanism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy, and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile, CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging cell integrity, which provided a new viewpoint for understanding the absorption mechanism with the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for future engineering.

14.
Plant Cell ; 36(1): 112-135, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37770034

RESUMEN

Reactive oxygen species (ROS) play an essential role in plant growth and responses to environmental stresses. Plant cells sense and transduce ROS signaling directly via hydrogen peroxide (H2O2)-mediated posttranslational modifications (PTMs) on protein cysteine residues. Here, we show that the H2O2-mediated cysteine oxidation of NAC WITH TRANS-MEMBRANE MOTIF1-LIKE 1 (GmNTL1) in soybean (Glycine max) during salt stress promotes its release from the endoplasmic reticulum (ER) membrane and translocation to the nucleus. We further show that an oxidative posttranslational modification on GmNTL1 residue Cys-247 steers downstream amplification of ROS production by binding to and activating the promoters of RESPIRATORY BURST OXIDASE HOMOLOG B (GmRbohB) genes, thereby creating a feed-forward loop to fine-tune GmNTL1 activity. In addition, oxidation of GmNTL1 Cys-247 directly promotes the expression of CATION H+ EXCHANGER 1 (GmCHX1)/SALT TOLERANCE-ASSOCIATED GENE ON CHROMOSOME 3 (GmSALT3) and Na+/H+ Antiporter 1 (GmNHX1). Accordingly, transgenic overexpression of GmNTL1 in soybean increases the H2O2 levels and K+/Na+ ratio in the cell, promotes salt tolerance, and increases yield under salt stress, while an RNA interference-mediated knockdown of GmNTL1 elicits the opposite effects. Our results reveal that the salt-induced oxidation of GmNTL1 promotes its relocation and transcriptional activity through an H2O2-mediated posttranslational modification on cysteine that improves resilience of soybean against salt stress.


Asunto(s)
Glycine max , Tolerancia a la Sal , Glycine max/genética , Tolerancia a la Sal/genética , Peróxido de Hidrógeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cisteína/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Materials (Basel) ; 16(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569954

RESUMEN

Moisture is the basis of CO2 transport and carbonation reactions in the internal pores of cement-based materials. Too much or too little moisture influences the effect of the carbonation modification of CO2 on recycled concrete aggregate (RCA). During the carbonation reaction process of RCA, moisture is mainly derived from the environmental relative humidity (RH) and the initial water content (IWC) of the RCA itself. According to the available literature, most of the studies on the effect of moisture on the carbonation modification of RCA considered either RH or IWC. Further investigations of the synergistic effects of RH and IWC on the improvement in the properties of carbonated recycled concrete aggregate (CRCA) are needed. In this study, accelerated carbonation experiments were conducted for RCA samples with different IWCs under different environmental RHs. The results showed that the best moisture conditions for CRCA property improvement were confirmed as RH = 70% for the dry-state IWC and RH = 50% for the saturated-state IWC. When the RCAs were carbonized under the conditions of high RH with low IWC and low RH with high IWC, CO2 had good abilities to permeate and diffuse, with the improvement in CRCA properties achieving excellent levels of performance.

16.
Chemosphere ; 338: 139579, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37474032

RESUMEN

The escalating generation of hazardous waste (HW) has become a pressing concern worldwide, straining waste management systems and posing significant health hazards. Addressing this challenge necessitates an accurate understanding of HW generation, which can be achieved through the application of advanced models. The Transformer model, known for its ability to capture complex nonlinear processes, proves invaluable in extracting essential features and making precise HW generation predictions. To enhance comprehension of the key factors influencing HW generation, visualization techniques such as SHapley Additive exPlanations (SHAP) provide insightful explanations. In this study, a novel approach combining classical deep learning algorithms with the Transformer model is proposed, yielding impressive results with an R2 value of 0.953 and an RMSE of 7.284 for HW prediction. Notably, among the five key fields considered-demographics, socio-economics, industrial production, environmental governance, and medical health-industrial production emerges as the primary contributor, accounting for over 50% of HW generation. Moreover, a high rate of industrial development is anticipated to further accelerate this process.


Asunto(s)
Conservación de los Recursos Naturales , Administración de Residuos , Residuos Peligrosos/análisis , China , Política Ambiental , Administración de Residuos/métodos
17.
Artículo en Inglés | MEDLINE | ID: mdl-37453026

RESUMEN

A high ethanol usage of alcohol oxidase (AOX) was required in industry. In this study, a "expand substrate pocket" strategy achieved a high activity AOX from Hansenula polymorpha (H. polymorpha) by Phe to Val residue (F/V) site-directed mutation to enlarge ethanol channel. Although H. Polymorpha AOX (HpAOX) possessed respectively 71.3% and 76.1% similarity with AOX (PpAOX) from Pichia pastoris (P. pastoris) in DNA and protein sequences, their active site structures including catalytic site and substrate channel were similar according to computer-aided analysis. After 3D structure analysis, Phe99 residue of their substrate channels was the most important residue to impact enzyme activity because of its large aromatic side chains. F99V mutation of HpAOX (HpAOXF99V) was designed and executed based on the enzyme catalytic mechanism and molecular computation in order to allow more larger size ethanol into active site. The highest enzyme activity of the fourth strains of HpAOXF99V mutant strain exhibited 12.06-folds increase than that of the host GS115 strain. Furthermore, kinetic studies indicated that the HpAOXF99V significantly promoted catalytic efficiency of ethanol than HpAOX, including Km, Vmax, kcat and kcat/Km. We also provided a new insight that the cofactor FAD irritated both active AOX octamer biosynthesis production and enzyme-catalysed ability due to help enzyme assembly and redox potential.

18.
J Microsc ; 291(3): 229-236, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358710

RESUMEN

Many diseases are related to changes in the biomechanical properties of cells; their study can provide a theoretical basis for drug screening and can explain the internal working of living cells. In this study, the biomechanical properties of nephrocytes (VERO cells), hepatocytes (HL-7702 cells), and hepatoma cells (SMCC-7721 cells) in culture were detected by atomic force microscopy (AFM) to analyse the side effects of colchicine at different concentrations (0.1 µg/mL (A) and 0.2 µg/mL (B)) at the nanoscale for 2, 4 and 6 h. Compared with the corresponding control cells, the damage to the treated cells increased in a dose-dependent manner. Among normal cells, the injury of nephrocytes (VERO cells) was markedly worse than that of hepatocytes (HL-7702 cells) in both colchicine solutions A and B. Based on the analyses of biomechanical properties, the colchicine solution reduced the rate of division and inhibited metastasis of SMCC-7721 cells. By comparing these two concentrations, we found that the anticancer effect of colchicine solution A was greater than that of solution B. Studying the mechanical properties of biological cells can help understand the mechanism of drug action at the molecular level and provide a theoretical basis for preventing the emergence and diagnosis of diseases at the nanoscale.


Asunto(s)
Colchicina , Hepatocitos , Animales , Chlorocebus aethiops , Colchicina/toxicidad , Fenómenos Biomecánicos , Células Vero , Microscopía de Fuerza Atómica
19.
Adv Mater ; 35(39): e2303674, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37325993

RESUMEN

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) with near-ideal bandgap still lag behind the pure lead PSCs. Disordered heterojunctions caused by inhomogeneous Sn/Pb ratio in the binary perovskite film induce large recombination loss. Here, an Sn-Pb perovskite film is reported with homogeneous component and energy distribution by introducing hydrazine sulfate (HS) in Sn perovskite precursor. HS can form hydrogen bond network and coordinate with FASnI3 thus no longer bond with Pb2+ , which reduces the crystallization rate of tin perovskite to the level of lead analog. The strong bonding between SO4 2- and Sn2+ can also suppress its oxidation. As a result, the Sn-Pb PSCs with HS exhibit a significantly improved VOC of 0.91 V along with a high efficiency of 23.17%. Meanwhile, the hydrogen bond interaction network, strong bonding between Sn2+ and sulfate ion also improve the thermal, storage, and air stability of resulting devices.

20.
Environ Sci Technol ; 57(23): 8467-8475, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37256786

RESUMEN

Residential emissions significantly contribute to air pollution. To address this issue, a clean heating campaign was implemented to replace coal with electricity or natural gas among 13.9 million rural households in northern China. Despite great success, the cost-benefits and environmental equity of this campaign have never been fully investigated. Here, we modeled the environmental and health benefits, as well as the total costs of the campaign, and analyzed the inequality and inequity. We found that even though the campaign decreased only 1.1% of the total energy consumption, PM2.5 emissions and PM2.5 exposure experienced 20% and 36% reduction, respectively, revealing the amplification effects along the causal pathway. Furthermore, the number of premature deaths attributable to residential emissions reduced by 32%, suggesting that the campaign was highly beneficial. Governments and residents shared the cost of 2,520 RMB/household. However, the benefits and the costs were unevenly distributed, as the residents in mountainous areas were not only less benefited from the campaign but also paid more because of the higher costs, resulting in a notably lower cost-effectiveness. Moreover, villages in less developed areas tended to choose natural gas with a lower initial investment but a higher total cost (2,720 RMB/household) over electricity (2,190 RMB/household). With targeted investment and subsidies in less developed areas and the promotion of electricity and other less expensive alternatives, the multidevelopment goals of improved air quality, reduced health impacts, and reduced inequity in future clean heating interventions could be achieved.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Análisis Costo-Beneficio , Material Particulado/análisis , Calefacción , Gas Natural , Contaminación del Aire/análisis , China , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...