Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 252-263, 2022 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-35142135

RESUMEN

Cultivating salt-alkali tolerant rice varieties is one of the important ways to meet the increasing food demand of growing global population. In this study, twenty-one rice germplasms with different salt-alkali tolerance were treated with six salt-alkali concentrations at germination and seedling stages. The germination potential, germination rate, shoot length, root length, root number, fresh weight of shoot and seedlings were measured. The average value of salt damage rate was used to evaluate the salt-alkali tolerance. As the salt-alkali concentration increases, the inhibition on seed germination and growth became more obvious. Upon treatment with 1% NaCl plus 0.25% NaHCO3, the salt damage rate of germination rate has the largest variation, ranging from 0% to 89.80%. The salt damage rate of each trait shows a similar trend at all concentrations. Four germplasm resources with strong salt-alkali tolerance (Dajiugu, Nippobare, Mowanggu and 02428) and 7 sensitive germplasms were screened. The salt-tolerant gene sequence of 4 salt-alkali tolerant varieties and 3 sensitive germplasms were analyzed. OSHAL3 and OsRR22 were identical among the 7 germplasms, but SKC1 and DST showed clear variations between the salt-alkali tolerant and sensitive germplasms. Besides the salt-alkali tolerant germplasm resources, this study can also serve as a reference for mining of genes involved in salt-alkali tolerance and breeding of salt-alkali tolerant rice varieties.


Asunto(s)
Oryza , Plantones , Álcalis , Germinación , Oryza/genética , Fitomejoramiento , Plantones/genética
2.
BMC Plant Biol ; 21(1): 313, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215178

RESUMEN

BACKGROUND: Harnessing heterosis is one of the major approaches to increase rice yield and has made a great contribution to food security. The identification and selection of outstanding parental genotypes especially among male sterile lines is a key step for exploiting heterosis. Two-line hybrid system is based on the discovery and application of photoperiod- and thermo-sensitive genic sensitive male sterile (PTGMS) materials. The development of wide-range of male sterile lines from a common gene pool leads to a narrower genetic diversity, which is vulnerable to biotic and abiotic stress. Hence, it is valuable to ascertain the genetic background of PTGMS lines and to understand their relationships in order to select and design a future breeding strategy. RESULTS: A collection of 118 male sterile rice lines and 13 conventional breeding lines from the major rice growing regions of China was evaluated and screened against the photosensitive (pms3) and temperature sensitive male sterility (tms5) genes. The total gene pool was divided into four major populations as P1 possessing the pms3, P2 possessing tms5, P3 possessing both pms3 and tms5 genes, and P4 containing conventional breeding lines without any male sterility allele. The high genetic purity was revealed by homozygous alleles in all populations. The population admixture, principle components and the phylogenetic analysis revealed the close relations of P2 and P3 with P4. The population differentiation analysis showed that P1 has the highest differentiation coefficient. The lines from P1 were observed as the ancestors of other three populations in a phylogenetic tree, while the lines in P2 and P3 showed a close genetic relation with conventional lines. A core collection of top 10% lines with maximum within and among populations genetic diversity was constructed for future research and breeding efforts. CONCLUSION: The low genetic diversity and close genetic relationship among PTGMS lines in P2, P3 and P4 populations suggest a selection sweep and they might result from a backcrossing with common ancestors including the pure lines of P1. The core collection from PTGMS panel updated with new diverse germplasm will serve best for further two-line hybrid breeding.


Asunto(s)
Oryza/genética , Fotoperiodo , Infertilidad Vegetal/genética , Semillas/genética , Temperatura , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Análisis por Conglomerados , Ontología de Genes , Estudios de Asociación Genética , Marcadores Genéticos , Luz , Nucleótidos/genética , Oryza/efectos de la radiación , Filogenia , Infertilidad Vegetal/efectos de la radiación , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Reproducibilidad de los Resultados , Semillas/efectos de la radiación
3.
Plant Dis ; 105(12): 3829-3834, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34152208

RESUMEN

Rice blast caused by Magnaporthe oryzae poses significant threaten to rice production. For breeding and deploying resistant rice varieties, it is essential to understand the frequencies and genetic variations of avirulence (AVR) genes in the pathogen populations. In this study, 444 isolates were collected from Hunan Province, China in 2012, 2015, and 2016, and their pathogenicity was evaluated by testing them on monogenic rice lines carrying resistance genes Pita, Pizt, Pikm, Pib, or Pi9. The frequencies of corresponding AVR genes AVRPizt, AVRPikm, AVRPib, AVRPi9, and AVRPita were characterized by amplification and sequencing these genes in the isolates. Both Pi9 and Pikm conferred resistance to >75% of the tested isolates, while Pizt, Pita, and Pib were effective against 55.63, 15.31, and 3.15% of the isolates, respectively. AVRPikm and AVRPi9 were detected in 90% of the isolates and AVRPita, AVRPizt, and AVRPib were present in 26.12, 66.22, and 79% of the isolates, respectively. Sequencing of AVR genes showed that most mutations were single nucleotide polymorphisms, transposon insertions, and insertion mutations. The variable sites of AVRPikm and AVRPita were mainly located in the coding sequence regions (CDS), and most were synonymous mutations. A 494-bp Pot2 transposon sequence insertion was found at the 87 bp position upstream of the start codon in AVRPib. Noteworthy, although no mutations were found in CDS of AVRPi9, a GC-rich inserted sequence of ∼200 bp was found at the 1,272 bp position upstream of the start codon in three virulent isolates. As AVRPikm and AVRPi9 were widely distributed with low genetic variation in the pathogen population, Pikm and Pi9 should be promising genes for breeding rice cultivars with blast resistance in Hunan.


Asunto(s)
Genes Fúngicos , Magnaporthe , Oryza , Magnaporthe/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología
4.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615063

RESUMEN

Chilling stress is considered the major abiotic stress affecting the growth, development, and yield of rice. To understand the transcriptomic responses and methylation regulation of rice in response to chilling stress, we analyzed a cold-tolerant variety of rice (Oryza sativa L. cv. P427). The physiological properties, transcriptome, and methylation of cold-tolerant P427 seedlings under low-temperature stress (2-3 °C) were investigated. We found that P427 exhibited enhanced tolerance to low temperature, likely via increasing antioxidant enzyme activity and promoting the accumulation of abscisic acid (ABA). The Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) data showed that the number of methylation-altered genes was highest in P427 (5496) and slightly lower in Nipponbare (Nip) and 9311 (4528 and 3341, respectively), and only 2.7% (292) of methylation genes were detected as common differentially methylated genes (DMGs) related to cold tolerance in the three varieties. Transcriptome analyses revealed that 1654 genes had specifically altered expression in P427 under cold stress. These genes mainly belonged to transcription factor families, such as Myeloblastosis (MYB), APETALA2/ethylene-responsive element binding proteins (AP2-EREBP), NAM-ATAF-CUC (NAC) and WRKY. Fifty-one genes showed simultaneous methylation and expression level changes. Quantitative RT-PCR (qRT-PCR) results showed that genes involved in the ICE (inducer of CBF expression)-CBF (C-repeat binding factor)-COR (cold-regulated) pathway were highly expressed under cold stress, including the WRKY genes. The homologous gene Os03g0610900 of the open stomatal 1 (OST1) in rice was obtained by evolutionary tree analysis. Methylation in Os03g0610900 gene promoter region decreased, and the expression level of Os03g0610900 increased, suggesting that cold stress may lead to demethylation and increased gene expression of Os03g0610900. The ICE-CBF-COR pathway plays a vital role in the cold tolerance of the rice cultivar P427. Overall, this study demonstrates the differences in methylation and gene expression levels of P427 in response to low-temperature stress, providing a foundation for further investigations of the relationship between environmental stress, DNA methylation, and gene expression in rice.


Asunto(s)
Respuesta al Choque por Frío/genética , Oryza/genética , Plantones/genética , Transcripción Genética , Regulación de la Expresión Génica de las Plantas/genética , Metilación , Oryza/crecimiento & desarrollo , Proteínas Quinasas/genética , Plantones/crecimiento & desarrollo , Transcriptoma/genética
5.
PLoS One ; 13(6): e0199077, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924832

RESUMEN

Panicle traits in rice impact yield and quality. The OsGRF4 gene encodes a growth-regulating factor controlling panicle traits, and was recently cloned. Gene expression profiling analysis can be used to study the molecular mechanisms underlying OsGRF4 regulation. Use of near-isogenic lines (NILs) reduces genetic background noise in omics studies. We compared transcriptome profiling of 7 cm long young panicles of NIL-Osgrf4 and NIL-OsGRF4 using RNAs sequence analyses. Eighty differentially expressed genes (DEGs) were identified. Our target gene OsGRF4 was up-regulated in NIL-OsGRF4 plants, which is consistent with a previous qPCR analysis. Hierarchical cluster analysis showed OsGRF4 is tightly clustered with the up-regulated DEG LOC_Os02g47320. Gene Ontology (GO) and KEGG analysis suggested that DEGs were primarily involved in somatic embryogenesis and chitinase activity. Two up-regulated DEGs, LOC_Os04g41680 and LOC_Os04g41620, were significantly enriched in the top 8 GO terms, and were over_represented in term of seed development, and may play key roles in grain shape regulation. The transcription factor Osmyb1 also exhibited differential expression between NILs, and may be is an important regulator of panicle traits. By searching reported functions of DEGs and by co-localization with previous identified quantitative trait loci (QTL), we determined that the pleiotropic gene OsGRF4 may also be involve in abiotic stress resistance. This study provides new candidates genes for further understanding the molecular mechanisms underlying rice panicle trait regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inflorescencia/genética , Oryza/genética , Transcriptoma , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Ontología de Genes , Pleiotropía Genética , Inflorescencia/anatomía & histología , Inflorescencia/clasificación , Oryza/anatomía & histología , Fitomejoramiento , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/ultraestructura , Análisis de Secuencia de ARN
6.
Plant Dis ; 101(4): 557-561, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30677362

RESUMEN

The blast (Magnaporthe oryzae) resistance (R) gene is the most economical and environmental method to control rice blast disease. Characterization of molecular identity and pathogenicity of M. oryzae benefits the deployment of effective blast R genes. In order to identify blast R genes that would be effective in Hunan Province,182 M. oryzae strains were analyzed with a Chinese differential system (CDS), repetitive element-based polymerase chain reaction (rep-PCR), and the presence and absence of avirulence (AVR) genes by PCR amplification with gene-specific primers. Identified blast R genes were validated with 24 monogenic lines (ML) carrying 24 major R genes. In total, 28 races (isolates) of M. oryzae was identified with CDS, and classified into 20 distinct groups with rep-PCR. Interestingly, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pib, and AVR-Pi9 were detected in more than 86.8% of the isolates; AVR-Pita1 was in 51.3% and AVR-Pii was in only 2.5%. In contrast, pathogenicity assays on 24 ML demonstrated that Pi9, Piz5, Pikh, and Pikm were more effective, with resistant frequencies of 91.6, 91, 87.9, and 87.3%, respectively; Pia, Piks, Pit, Pi12, and Pib were less than 15%. These findings revealed the complexity of a genetic basis of rice blast resistance, and shed light on useful blast R genes in Hunan Province.

7.
J Integr Plant Biol ; 58(10): 836-847, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26936408

RESUMEN

Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high-yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/metabolismo , Citocininas/metabolismo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...