Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(18): e2311022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290153

RESUMEN

2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room-temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30-180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.

2.
Phys Chem Chem Phys ; 25(42): 28941-28947, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855655

RESUMEN

Lattice dynamics plays a significant role in manipulating the unique physical properties of materials. In this work, femtosecond transient optical spectroscopy is used to investigate the generation mechanism and relaxation dynamics of coherent phonons in Fe1.14Te-a parent compound of chalcogenide superconductors. The reflectivity time series consist of the exponential decay component due to hot carriers and damped oscillations caused by the A1g phonon vibration. The vibrational frequency and dephasing time of the A1g phonons are obtained as a function of temperature. With increasing temperature, the phonon frequency decreases and can be well described with the anharmonicity model. Dephasing time is independent of temperature, indicating that the phonon dephasing is dominated by phonon-defect scattering. The impulsive stimulated Raman scattering mechanism is responsible for the coherent phonon generation. Owing to the resonance Raman effect, the maximum photosusceptibility of the A1g phonons occurs at 1.590 eV, corresponding to an electronic transition in Fe1.14Te.

3.
Mater Horiz ; 10(8): 3034-3043, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199532

RESUMEN

In spintronics, ordered magnetic domains are important for magnetic microdevices and controlling the orientation of ordered magnetic domains is important for applications such as domain wall resistance and spin wave propagation. Although a magnetic field or a current can reorient ordered magnetic domains, an energy-efficient electric-field-driven rotation of the ordered magnetic domains remains elusive. Here, using a nanotrenched polymeric layer, we obtain ordered magnetic strip domains in Ni films on a ferroelectric substrate. By applying electric fields to the ferroelectric substrate, we demonstrate that the ordered magnetic strip domains in Ni films are switched between the y- and x-axes driven by electric-fields. This switching of magnetic strip orientation is attributed to the electric-field-modulated in-plane magnetic anisotropies along the x- and y-axes of the Ni films, which are caused by the anisotropic biaxial strain of the ferroelectric substrate via strain-mediated magnetoelectric coupling. These results provide an energy-efficient approach for manipulating the ordered magnetic domains using electric fields.

4.
Adv Mater ; 35(1): e2205967, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36245330

RESUMEN

Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.

5.
Nat Mater ; 21(10): 1183-1190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941363

RESUMEN

The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m-2 h-1 bar-1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.


Asunto(s)
Grafito , Nanotubos de Carbono , Polímeros , Cloruro de Sodio , Agua/química
6.
Adv Mater ; 34(42): e2204163, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35975291

RESUMEN

Skyrmion helicity, which defines the spin swirling direction, is a fundamental parameter that may be utilized to encode data bits in future memory devices. Generally, in centrosymmetric ferromagnets, dipole skyrmions with helicity of -π/2 and π/2 are degenerate in energy, leading to equal populations of both helicities. On the other hand, in chiral materials where the Dzyaloshinskii-Moriya interaction (DMI) prevails and the dipolar interaction is negligible, only a preferred helicity is selected by the type of DMI. However, whether there is a rigid boundary between these two regimes remains an open question. Herein, the observation of dipole skyrmions with unconventional helicity polarization in a van der Waals ferromagnet, Fe5- δ GeTe2 , is reported. Combining magnetometry, Lorentz transmission electron microscopy, electrical transport measurements, and micromagnetic simulations, the short-range superstructures in Fe5- δ GeTe2 resulting in a localized DMI contribution, which breaks the degeneracy of the opposite helicities and leads to the helicity polarization, is demonstrated. Therefore, the helicity feature in Fe5- δ GeTe2 is controlled by both the dipolar interaction and DMI that the former leads to Bloch-type skyrmions with helicity of ±π/2 whereas the latter breaks the helicity degeneracy. This work provides new insights into the skyrmion topology in van der Waals materials.

7.
Nanoscale ; 14(34): 12339-12346, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971909

RESUMEN

The high-mobility two-dimensional electron gas (2DEG) generated at the interface between two wide-band insulators, LaAlO3 (LAO) and SrTiO3 (STO), is an extensively researched topic. In this study, we have successfully realized reversible switching between metallic and insulating states of the 2DEG system via the application of optical illumination and positive pulse voltage induced by the introduction of oxygen vacancies as reservoirs for electrons. The positive pulse voltage irreversibly drives the electron to the defect energy level formed by the oxygen vacancies, which leads to the formation of the insulating state. Subsequently, the metallic state can be achieved via optical illumination, which excites the trapped electron back to the 2DEG potential well. The ON/OFF state is observed to be robust with a ratio exceeding 106; therefore, the interface can be used as an electrically and optically erasable non-volatile 2DEG memory.

8.
RSC Adv ; 12(26): 16479-16485, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35754880

RESUMEN

We present a time-resolved ultrafast optical spectroscopy study on BiTeI, a noncentrosymmetric semiconductor with large spin-orbit splitting. By tuning the pump photon energy, hot carriers can be excited into different energy bands, and the hot carriers decay dynamics are measured. The hot carriers excited by an 1.544 eV photon induce a positive differential reflectivity following a single exponential decay, while the hot carriers excited by an 1.651 eV photon show a negative reflectivity following two exponential decays, i.e., the hot carriers excited by 1.544 eV and 1.651 eV photons show different decay dynamics. We also investigate hot carrier dynamics in each Rashba splitting band at the 1.544 eV and 1.651 eV photon pump, and there is no difference in hot carrier decay between the left and right Rashba splitting bands for both cases.

9.
ACS Appl Mater Interfaces ; 13(50): 60227-60240, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34902965

RESUMEN

It is challenging to achieve highly tunable multifunctional properties in one piezoelectric ceramic system through a simple method due to the complicated relationship between the microscopic structure and macroscopic property. Here, multifunctional potassium sodium niobate [(K, Na)NbO3 (KNN)]-based lead-free piezoceramics with tunable piezoelectric and electrostrictive properties are achieved by controlling the long-range ferroelectric ordering (LRFO) through antimony (Sb) doping. At a low Sb doping, the slightly distorted NbO6 octahedron and the softened B-O repulsion well maintain the LRFO and induce plenty of nanoscale domains coexisting with a few polar nanoregions (PNRs). Thereby, the diffused rhombohedral-orthorhombic-tetragonal (R-O-T) multiphase coexistence with distinct dielectric jumping is constructed near room temperature, by which the nearly 2-fold increase in the piezoelectric coefficient (d33 ∼ 539 pC/N) and the temperature-insensitive strain (the unipolar strain varies less than 8% at 27-120 °C) are obtained. At a high Sb doping, the LRFO is significantly destroyed, leading to predominant PNRs. Thus, a typical relaxor is obtained at the ferroelectric-paraelectric phase transition near room temperature, in which a large electrostrictive coefficient (Q33 = 0.035 m4/C2), independent of the electric field and temperature, is obtained and comparable to that of lead-based materials. Therefore, our results prove that controlling the LRFO is a feasible way to achieve high-performance multifunctional KNN-based ceramics and is beneficial to the future composition design for KNN-based ceramics.

10.
Adv Mater ; 33(52): e2105902, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34665483

RESUMEN

Nonvolatile electrical control of magnetism is crucial for developing energy-efficient magnetic memory. Based on strain-mediated magnetoelectric coupling, a multiferroic heterostructure containing an isolated magnet requires nonvolatile strain to achieve this control. However, the magnetization response of an interacting magnet to strain remains elusive. Herein, Co/MgO/CoFeB magnetic tunnel junctions (MTJs) exhibiting dipole interaction on ferroelectric substrates are fabricated. Remarkably, nonvolatile voltage control of the resistance in the MTJs is demonstrated, which originates from the nonvolatile magnetization rotation of an interacting CoFeB magnet driven by volatile voltage-generated strain. Conversely, for an isolated CoFeB magnet, this volatile strain induces volatile control of magnetism. These results reveal that the magnetization response to volatile strain among interacting magnets is different from that among isolated magnets. The findings highlight the role of dipole interaction in multiferroic heterostructures and can stimulate future research on nonvolatile electrical control of magnetism with additional interactions.

11.
Adv Mater ; 33(35): e2101131, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34302387

RESUMEN

Chiral magnets endowed with topological spin textures are expected to have promising applications in next-generation magnetic memories. In contrast to the well-studied 2D or 3D magnetic skyrmions, the authors report the discovery of 1D nontrivial magnetic solitons in a transition metal dichalcogenide 2H-TaS2 via precise intercalation of Cr elements. In the synthetic Cr1/3 TaS2 (CTS) single crystal, the coupling of the strong spin-orbit interaction from TaS2 and the chiral arrangement of the magnetic Cr ions evoke a robust Dzyaloshinskii-Moriya interaction. A magnetic helix having a short spatial period of ≈25 nm is observed in CTS via Lorentz transmission electron microscopy. In a magnetic field perpendicular to the helical axis, the helical spin structure transforms into a chiral soliton lattice (CSL) with the spin structure evolution being consistent with the chiral sine-Gordon theory, which opens promising perspectives for the application of CSL to fast-speed nonvolatile magnetic memories. This work introduces a new paradigm to soliton physics and provides an effective strategy for seeking novel 2D magnets.

12.
Microsc Microanal ; 27(4): 758-766, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34018478

RESUMEN

Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as "gas cooling ability (H)", determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.

13.
Nat Commun ; 12(1): 540, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483483

RESUMEN

Nonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin-orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.

14.
ACS Appl Mater Interfaces ; 12(44): 49795-49804, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085457

RESUMEN

Although a room-temperature multiphase coexistence (MPC) strategy improves the piezoelectric coefficient (d33) of potassium sodium niobate ((K,Na)NbO3, KNN) ceramics, it still suffers from the dependencies on composition and temperature, making it remain challenging to further improve d33 and temperature stability of strain for an already-built MPC. Here, we proposed a new route to resolve this issue, that is, tuning the covalency of A-O bonds in an already-built MPC. We chose 0.96(Na0.60K0.40)(Nb0.955Sb0.045)O3-0.04(Bi0.5Na0.5)ZrO3 ceramics as an already-built MPC and replaced (Bi0.5Na0.5)2+ with Ba2+ to tune the covalency of A-O bonds. Thus, we synthesized 0.96(Na0.60K0.40)(Nb0.955Sb0.045)O3-0.04(Bi0.5Na0.5)1-xBaxZrO3 ceramics. We not only improved d33 values from 450 pC/N (at x = 0) to 500-505 pC/N (at x = 0.05-0.10) but also obtained the enhanced temperature stability for strain at x = 0.10, outperforming that of samples with x = 0 and other KNN-based ceramics. The increased d33 is attributed to the well-preserved MPC and the repaired long-range ordering, and the improved temperature stability of strain is due to shifting the MPC to a slightly higher temperature than room temperature. Therefore, the new route is useful to further improve the performance of an already-built MPC, benefiting to the future design of MPC and the practical application of KNN-based ceramics.

15.
ACS Appl Mater Interfaces ; 12(35): 39455-39461, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805938

RESUMEN

Although the pronounced piezoelectricity was obtained in (K, Na)NbO3 piezoceramics with the phase boundary engineering (PBE), the physical mechanisms remain pending. Here, we revealed for the first time how PBE influences the piezoelectric properties through synergetic contributions. Cryogenic experiments confirm that PBE constructs a phase coexistence, consisting of rhombohedral (R), orthorhombic (O), and tetragonal (T) phases, with a structural softening, by which a high piezoelectric coefficient d33 of 555 pC/N and the enhanced temperature stability of strain are achieved. The phenomenological theory and transmission electron microscopy demonstrate that the superior d33 hinges on the flattened Gibbs free energy and the abundant nanodomains (10-80 nm), which induce the enhanced permittivity and the coexisting single domain and multidomain zones, respectively. In particular, we disclosed a trade-off relationship between ferroelectric domains and polar nanoregions (PNRs) and found the "double-edged sword" role of PNRs in the piezoelectricity enhancement. Therefore, this work helps understand the physical mechanisms of the piezoelectricity enhancement, benefiting the future research of lead-free piezoceramics.

16.
ACS Nano ; 14(9): 11319-11326, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32812734

RESUMEN

Linear magnetoresistance is generally observed in polycrystalline zero-gap semimetals and polycrystalline Dirac semimetals with ultrahigh carrier mobility. We report the observation of positive and linear magnetoresistance in a single-crystalline semiconductor Bi2O2Se grown by chemical vapor deposition. Both Se-poor and Se-rich Bi2O2Se single-crystalline nanoplates display a linear magnetoresistance at high fields. The Se-poor Bi2O2Se exhibits a typical 2D conduction feature with a small effective mass of 0.032m0. The average transport Hall mobility, which is lower than 5500 cm2 V-1 s-1, is significantly reduced, compared with the ultrahigh quantum mobility as high as 16260 cm2 V-1 s-1. More interestingly, the pronounced Shubnikov-de Hass oscillations can be clearly observed from the very large and nearly linear magnetoresistance (>500% at 14 T and 2 K) in Se-poor Bi2O2Se. A close analysis of the results reveals that the large and linear magnetoresistance observed can be ascribed to the spatial mobility fluctuation, which is strongly supported by Fermi energy inhomogeneity in the nanoplate samples detected using an electrostatic force microscopy images and multiple frequencies in a Shubnikov-de Hass oscillation. On the contrary, the Se-rich Bi2O2Se exhibits a transport mobility (<300 cm2 V-1 s-1) much smaller than that observed in Se-poor samples and shows a much smaller linear magnetoresistance ratio (less than 150% at 14 T and 2 K). More strikingly, no Shubnikov-de Hass oscillations can be observed. Therefore, the linear magnetoresistance in Se-rich Bi2O2Se is governed by the average mobility rather than the mobility fluctuation.

17.
Nat Commun ; 11(1): 3577, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681004

RESUMEN

Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin-orbital torque effect. However, this scheme is energy consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus. Here, we realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect. Intriguingly, such a manipulation is non-volatile and exhibits a multistate feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Our results open a direction for constructing low-energy-dissipation, non-volatile, and multistate skyrmion-based spintronic devices.

18.
Sci Adv ; 6(6): eaay1876, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32083177

RESUMEN

The direct imaging of current density vector distributions in thin films has remained a daring challenge. Here, we report that an inhomogeneous current distribution can be mapped directly by the trajectories of magnetic half-skyrmions driven by an electrical current in Pt/Co/Ta trilayer, using polar magneto-optical Kerr microscopy. The half-skyrmion carries a topological charge of 0.5 due to the presence of Dzyaloshinskii-Moriya interaction, which leads to the half-skyrmion Hall effect. The Hall angle of half-skyrmions is independent of current density and can be reduced to as small as 4° by tuning the thickness of the Co layer. The Hall angle is so small that the elongation path of half-skyrmion approximately delineates the invisible current flow as demonstrated in both a continuous film and a curved track. Our work provides a practical technique to directly map inhomogeneous current distribution even in complex geometries for both fundamental research and industrial applications.

19.
Chem Soc Rev ; 49(3): 671-707, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31913391

RESUMEN

Developing eco-friendly high-performance piezoceramics without lead has become one of the most advanced frontiers in interdisciplinary research. Although potassium sodium-niobate {(K,Na)NbO3, KNN} based ceramics are believed to be one of the most promising lead-free candidates, the relatively inferior piezoelectric properties and strong temperature dependency have hindered their development for more than 50 years since being discovered in the 1950s. It was not until 2014 that our group initially proposed a new phase boundary (NPB) that simultaneously improved the piezoelectric properties and temperature stability of non-textured KNN-based ceramics to the level of partly lead-based ceramics. The NPB has been then proved by some researchers and believed to pave the way for "lead-free at last" proposed by E. Cross (Nature, 2004, 432, 24). However, the understanding of the NPB is still in its infancy, leaving many controversies, including the phase structure and physical mechanisms at the NPB as well as the essential difference when compared with other phase boundaries. In this context, we systematically summarized the origin and development of the NPB, focusing on the construction, structure and intrinsic trait of the NPB, the effects of the NPB on the performance, and the validity and related incipient devices of the NPB. Particularly, we concluded the phase structure and domain structure locating at the NPB, analyzed the physical mechanisms in depth, proposed the possible methods to further improve the performance at the NPB, and demonstrated the validity and scope of the NPB as well as the device application. Finally, we gave out our perspective on the challenges and future research of KNN-based ceramics with NPB. Therefore, we believe that this review could promote the understanding of the NPB and guide the future work of KNN-based ceramics.

20.
Sci Adv ; 5(12): eaay5141, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853501

RESUMEN

One of the motivations for multiferroics research is to find an energy-efficient solution to spintronic applications, such as the solely electrical control of magnetic tunnel junctions. Here, we integrate spintronics and multiferroics by depositing MgO-based magnetic tunnel junctions on ferroelectric substrate. We fabricate two pairs of electrodes on the ferroelectric substrate to generate localized strain by applying voltage. This voltage-generated localized strain has the ability to modify the magnetic anisotropy of the free layer effectively. By sequentially applying voltages to these two pairs of electrodes, we successively and unidirectionally rotate the magnetization of the free layer in the magnetic tunnel junctions to complete reversible 180° magnetization switching. Thus, we accomplish a giant nonvolatile solely electrical switchable high/low resistance in magnetic tunnel junctions at room temperature without the aid of a magnetic field. Our results are important for exploring voltage control of magnetism and low-power spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...