Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Nat Food ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773275
2.
Angew Chem Int Ed Engl ; : e202406332, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781113

RESUMEN

Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.

3.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697043

RESUMEN

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Asunto(s)
Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética , Nanopartículas , Polímeros , Semiconductores , Imagen por Resonancia Magnética/métodos , Animales , Elementos de la Serie de los Lantanoides/química , Polímeros/química , Nanopartículas/química , Ratones , Humanos , Gadolinio/química , Luminiscencia , Oxígeno Singlete/química , Itrio/química , Fluoruros/química , Ratones Desnudos
4.
Front Neurorobot ; 18: 1305605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765870

RESUMEN

Decoding surface electromyography (sEMG) to recognize human movement intentions enables us to achieve stable, natural and consistent control in the field of human computer interaction (HCI). In this paper, we present a novel deep learning (DL) model, named fusion inception and transformer network (FIT), which effectively models both local and global information on sequence data by fully leveraging the capabilities of Inception and Transformer networks. In the publicly available Ninapro dataset, we selected surface EMG signals from six typical hand grasping maneuvers in 10 subjects for predicting the values of the 10 most important joint angles in the hand. Our model's performance, assessed through Pearson's correlation coefficient (PCC), root mean square error (RMSE), and R-squared (R2) metrics, was compared with temporal convolutional network (TCN), long short-term memory network (LSTM), and bidirectional encoder representation from transformers model (BERT). Additionally, we also calculate the training time and the inference time of the models. The results show that FIT is the most performant, with excellent estimation accuracy and low computational cost. Our model contributes to the development of HCI technology and has significant practical value.

5.
Heart Lung ; 66: 86-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593678

RESUMEN

BACKGROUND: Previous observational studies have suggested associations between Coronary Heart Disease (CHD) and Mental Health Disorders (MHD). However, the causal nature of these relationships has remained elusive. OBJECTIVE: The purpose of this study is to elucidate the causal relationships between eight distinct types of CHD and six types of MHD using Mendelian randomization (MR) analysis. METHODS: The MR analysis employed a suite of methods including inverse variance-weighted (IVW), MR-Egger, weighted mode, weighted median, and simple mode techniques. To assess heterogeneity, IVW and MR-Egger tests were utilized. MR-Egger regression also served to investigate potential pleiotropy. The stability of IVW results was verified by leave-one-out sensitivity analysis. RESULTS: We analyzed data from over 2,473,005 CHD and 803,801 MHD patients, informed by instrumental variables from large-scale genomic studies on European populations. The analysis revealed a causal increase in the risk of Major Depressive Disorder and Mania associated with Coronary Artery Disease and Myocardial Infarction. Heart Failure was found to causally increase the risk for Bipolar Disorder and Schizophrenia. Atrial Fibrillation and Ischemic Heart Diseases were positively linked to Generalized Anxiety Disorder and Mania, respectively. There was no significant evidence of an association between Hypertensive Heart Disease, Hypertrophic Cardiomyopathy, Pulmonary Heart Disease, and MHD. Reverse MR analysis indicated that MHD do not serve as risk factors for CHD. CONCLUSIONS: The findings suggest that specific types of CHD may act as risk factors for certain MHDs. Consequently, incorporating psychological assessments into the management of patients with CHD could be advantageous.


Asunto(s)
Enfermedad Coronaria , Análisis de la Aleatorización Mendeliana , Trastornos Mentales , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Enfermedad Coronaria/psicología , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/genética , Enfermedad Coronaria/complicaciones , Factores de Riesgo , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Masculino , Femenino
6.
Haematologica ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572553

RESUMEN

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

7.
J Neurochem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664195

RESUMEN

Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4ß2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.

8.
J Am Chem Soc ; 146(17): 11669-11678, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644738

RESUMEN

Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.


Asunto(s)
Colorantes Fluorescentes , G-Cuádruplex , Imagen Óptica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Animales , Metástasis de la Neoplasia , Ratones , Simulación del Acoplamiento Molecular , Diseño de Fármacos , Rayos Infrarrojos , Línea Celular Tumoral , Estructura Molecular
9.
Blood Adv ; 8(9): 2217-2234, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38457926

RESUMEN

ABSTRACT: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.


Asunto(s)
Oxidorreductasas de Alcohol , Factores Reguladores del Interferón , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-myc , Mieloma Múltiple/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Humanos , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratones , Animales , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas Supresoras de Tumor/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Small ; : e2311649, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552254

RESUMEN

X-ray detection and imaging are widely used in medical diagnosis, product inspection, security monitoring, etc. Large-scale polycrystalline perovskite thick films possess high potential for direct X-ray imaging. However, the notorious problems of baseline drift and high detection limit caused by ions migration are still remained. Here, ion migration is reduced by incorporating 2D perovskite into 3D perovskite, thereby increasing the ion activation energy. This approach hinders ion migration within the perovskite film, consequently suppressing baseline drift and reducing the lowest detection limit(LOD) of the device. As a result, the baseline drifting declines by 20 times and the LOD reduces to 21.1 nGy s-1, while the device maintains a satisfactory sensitivity of 5.6 × 103 µC Gy-1 cm-2. This work provides a new strategy to achieve low ion migration in large-scale X-ray detectors and may provide new thoughts for the application of mixed-dimension perovskite.

11.
Parkinsonism Relat Disord ; 123: 106558, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518543

RESUMEN

INTRODUCTION: Although locus coeruleus (LC) has been demonstrated to play a critical role in the cognitive function of Parkinson's disease (PD), the underlying mechanism has not been elucidated. The objective was to investigate the relationship among LC degeneration, cognitive performance, and the glymphatic function in PD. METHODS: In this retrospective study, 71 PD subjects (21 with normal cognition; 29 with cognitive impairment (PD-MCI); 21 with dementia (PDD)) and 26 healthy controls were included. All participants underwent neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and diffusion tensor image scanning on a 3.0 T scanner. The brain glymphatic function was measured using diffusion along the perivascular space (ALPS) index, while LC degeneration was estimated using the NM contrast-to-noise ratio of LC (CNRLC). RESULTS: The ALPS index was significantly lower in both the whole PD group (P = 0.04) and the PDD subgroup (P = 0.02) when compared to the controls. Similarly, the CNRLC was lower in the whole PD group (P < 0.001) compared to the controls. In the PD group, a positive correlation was found between the ALPS index and both the Montreal Cognitive Assessment (MoCA) score (r = 0.36; P = 0.002) and CNRLC (r = 0.26; P = 0.03). Mediation analysis demonstrated that the ALPS index acted as a significant mediator between CNRLC and the MoCA score in PD subjects. CONCLUSION: The ALPS index, a neuroimaging marker of glymphatic function, serves as a mediator between LC degeneration and cognitive function in PD.

12.
Crit Rev Immunol ; 44(3): 37-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421704

RESUMEN

Regulatory T (Treg) cells hold promise for the ultimate cure of immune-mediated diseases. However, how to effectively restore Treg function in patients remains unknown. Previous reports suggest that activated dendritic cells (DCs) de novo synthesize locally high concentrations of 1,25-dihydroxy vitamin D, i.e., the active vitamin D or 1,25(OH)2D by upregulating the expression of 25-hydroxy vitamin D 1α-hydroxylase. Although 1,25(OH)2D has been shown to induce Treg cells, DC-derived 1,25(OH)2D only serves as a checkpoint to ensure well-balanced immune responses. Our animal studies have shown that 1,25(OH)2D requires high concentrations to generate Treg cells, which can cause severe side effects. In addition, our animal studies have also demonstrated that dendritic cells (DCs) overexpressing the 1α-hydroxylase de novo synthesize the effective Treg-inducing 1,25(OH)2D concentrations without causing the primary side effect of hypercalcemia (i.e., high blood calcium levels). This study furthers our previous animal studies and explores the efficacy of the la-hydroxylase-overexpressing DCs in inducing human CD4+FOXP3+regulatory T (Treg) cells. We discovered that the effective Treg-inducing doses of 1,25(OH)2D were within a range. Additionally, our data corroborated that the 1α-hydroxylase-overexpressing DCs synthesized 1,25(OH)2D within this concentration range in vivo, thus facilitating effective Treg cell induction. Moreover, this study demonstrated that 1α-hydroxylase expression levels were pivotal for DCs to induce Treg cells because physiological 25(OH)D levels were sufficient for the engineered but not parental DCs to enhance Treg cell induction. Interestingly, adding non-toxic zinc concentrations significantly augmented the Treg-inducing capacity of the engineered DCs. Our new findings offer a novel therapeutic avenue for immune-mediated human diseases, such as inflammatory bowel disease, type 1 diabetes, and multiple sclerosis, by integrating zinc with the 1α-hydroxylase-overexpressing DCs.


Asunto(s)
Linfocitos T Reguladores , Zinc , Animales , Humanos , Vitamina D , Oxigenasas de Función Mixta , Células Dendríticas , Suplementos Dietéticos
13.
Angew Chem Int Ed Engl ; 63(16): e202400637, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38409519

RESUMEN

Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.


Asunto(s)
Leucil Aminopeptidasa , Imagen Óptica , Humanos , Fluorescencia , Microscopía Fluorescente/métodos , Retículo Endoplásmico , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes , Aminopeptidasas , Antígenos de Histocompatibilidad Menor
14.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368357

RESUMEN

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Asunto(s)
Hemofilia A , Secuenciación de Nanoporos , Ratones , Animales , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Hemofilia A/genética , Hemofilia A/terapia , Edición Génica/métodos , ADN
15.
Sci Rep ; 14(1): 4070, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374350

RESUMEN

In order to simultaneously maintain the ship magnetic field modeling accuracy, reduce the number of coefficient matrix conditions and the model computational complexity, an improved composite model is designed by introducing the magnetic dipole array model with a single-axis magnetic moment on the basis of the hybrid ellipsoid and magnetic dipole array model. First, the improved composite model of the ship's magnetic field is established based on the magnetic dipole array model with 3-axis magnetic moment, the magnetic dipole array model with only x-axis magnetic moment, and the ellipsoid model. Secondly, the set of equations for calculating the magnetic moments of the composite model is established, and for the problem of solving the pathological set of equations, the least-squares estimation, stepwise regression method, Tikhonov, and truncated singular value decomposition regularization methods are introduced in terms of the magnetic field, and generalized cross-validation is used to solve the optimal regularization parameters. Finally, a ship model test is designed to compare and analyze the effectiveness of the composite and hybrid models in four aspects: the number of coefficient matrix conditions of the model equation set, the relative error of magnetic field fitting, the relative error of magnetic field extrapolation, and the computational time complexity. The modeling results based on the ship model test data show that the composite model can be used for modeling the magnetic field of ships, and compared with the hybrid model, it reduces the number of coefficient matrix conditions and improves the computational efficiency on the basis of retaining a higher modeling accuracy, and it can be effectively applied in related scientific research and engineering.

16.
Hum Gene Ther ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38069573

RESUMEN

The effectiveness of adeno-associated virus (AAV)-based gene therapy is frequently constrained by the presence of AAV-neutralizing antibodies (NAbs). Existing detection techniques have shown inconsistencies across laboratories and cellular dependencies, challenging their universal applicability. Here, we redefine the NAb titer concept to represent the capability to neutralize a specific number of AAV virions per milliliter of serum. We present the AAV-homology-directed repair (HDR) assay, which harnesses the CRISPR-Cas9 system, offering a precise and sensitive means of detecting AAV NAbs. This assay employs a promoterless AAV HDR vector for integration into electroporated cells, facilitating the stable expression of a quantifiable fluorescent reporter and subsequent NAb titer assessment. Comparative evaluations indicated that the AAV-HDR method outperforms the traditional AAV overexpression (AAV-OE) assay regarding sensitivity and consistency. Crucially, it produced consistent outcomes across various cell lines, suggesting its potential as a universal standard for NAb titer measurement. We further confirmed the validity of the AAV-HDR titration approach by juxtaposing it with the established NT50 assay. Notably, the AAV-HDR method correlated robustly with both the AAV-OE assay and NT50 NAb titer values, and it exhibited heightened efficacy in identifying low-titer antibodies compared with the NT50 method. Given its ability to address AAV NAb detection challenges, the AAV-HDR assay holds promise for refining therapeutic strategies in gene therapy, particularly in tailoring AAV doses to neutralize preexisting NAbs.

17.
Angew Chem Int Ed Engl ; 63(11): e202315217, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081782

RESUMEN

Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.


Asunto(s)
Diagnóstico por Imagen , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Luminiscencia , Imagen Óptica/métodos
18.
Biosens Bioelectron ; 246: 115839, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38042054

RESUMEN

Rapid, sensitive and selective biosensing is highly important for analyzing biological targets and dynamic physiological processes in cells and living organisms. As an emerging tool, clustered regularly interspaced short palindromic repeats (CRISPR) system is featured with excellent complementary-dependent cleavage and efficient trans-cleavage ability. These merits enable CRISPR system to improve the specificity, sensitivity, and speed for molecular detection. Herein, the structures and functions of several CRISPR proteins for biosensing are summarized in depth. Moreover, the strategies of target recognition, signal conversion, and signal amplification for CRISPR-based biosensing were highlighted from the perspective of biosensor design principles. The state-of-art applications and recent advances of CRISPR system are then outlined, with emphasis on their fluorescent, electrochemical, colorimetric, and applications in POCT technology. Finally, the current challenges and future prospects of this frontier research area are discussed.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Colorantes , Sistemas CRISPR-Cas/genética
19.
Sci Bull (Beijing) ; 69(5): 636-647, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158292

RESUMEN

Lipid peroxidation (LPO), the process of membrane lipid oxidation, is a potential new form of cell death for cancer treatment. However, the radical chain reaction involved in LPO is comprised of the initiation, propagation (the slowest step), and termination stages, limiting its effectiveness in vivo. To address this limitation, we introduce the radical chain transfer reaction into the LPO process to target the propagation step and overcome the sluggish rate of lipid peroxidation, thereby promoting endogenous lipid peroxidation and enhancing therapeutic outcomes. Firstly, radical chain transfer agent (CTA-1)/Fe nanoparticles (CTA-Fe NPs-1) was synthesized. Notably, CTA-1 convert low activity peroxyl radicals (ROO·) into high activity alkoxyl radicals (RO·), creating the cycle of free radical oxidation and increasing the propagation of lipid peroxidation. Additionally, CTA-1/Fe ions enhance reactive oxygen species (ROS) generation, consume glutathione (GSH), and thereby inactivate GPX-4, promoting the initiation stage and reducing termination of free radical reaction. CTA-Fe NPs-1 induce a higher level of peroxidation of polyunsaturated fatty acids in lipid membranes, leading to highly effective treatment in cancer cells. In addition, CTA-Fe NPs-1 could be enriched in tumors inducing potent tumor inhibition and exhibit activatable T1-MRI contrast of magnetic resonance imaging (MRI). In summary, CTA-Fe NPs-1 can enhance intracellular lipid peroxidation by accelerating initiation, propagation, and inhibiting termination step, promoting the cycle of free radical reaction, resulting in effective anticancer outcomes in tumor-bearing mice.


Asunto(s)
Glutatión , Neoplasias , Ratones , Animales , Peroxidación de Lípido , Oxidación-Reducción , Radicales Libres/metabolismo , Especies Reactivas de Oxígeno , Glutatión/metabolismo , Neoplasias/diagnóstico por imagen
20.
ACS Appl Mater Interfaces ; 15(46): 54050-54059, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37956100

RESUMEN

Narrowband photodetectors have wide application potential in high-resolution imaging and encrypted communication, due to their high-precision spectral resolution capability. In this work, we report a fast response, high spectral rejection ratio, and self-filtered ultranarrowband photodetector with a new mechanism, which introduces bulk recombination by doping Bi3+ and cooperates with surface recombination for further quenching photogenerated charges generated by short-wavelength-light excitation in perovskite single-crystal. A perovskite film focused on collecting charges is fabricated on the single crystal by a lattice-matched solution-processed epitaxial growth method. Due to the formation of PN heterojunctions, a narrowband photodetector in this mechanism has remarkable spectral selectivity and detection performance with an ultranarrow full width at half-maximum (FWHM) of 7.7 nm and a high spectral rejection ratio of 790, as well as a high specific detectivity up to 1.5 × 1010 Jones, a fast response speed with a rise time and fall time of ∼8 and 137 µs. The ultrafast and ultranarrow spectra response of self-filtered narrowband photodetector provides a new strategy in high-precision and high-resolution photoelectric detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...