Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.034
Filtrar
1.
Nat Nanotechnol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740934

RESUMEN

Nutrient avidity is one of the most distinctive features of tumours. However, nutrient deprivation has yielded limited clinical benefits. In Gaucher disease, an inherited metabolic disorder, cells produce cholesteryl-glucoside which accumulates in lysosomes and causes cell damage. Here we develop a nanoparticle (AbCholB) to emulate natural-lipoprotein-carried cholesterol and initiate Gaucher disease-like damage in cancer cells. AbCholB is composed of a phenylboronic-acid-modified cholesterol (CholB) and albumin. Cancer cells uptake the nanoparticles into lysosomes, where CholB reacts with glucose and generates a cholesteryl-glucoside-like structure that resists degradation and aggregates into microscale crystals, causing Gaucher disease-like damage in a glucose-dependent manner. In addition, the nutrient-sensing function of mTOR is suppressed. It is observed that normal cells escape severe damage due to their inferior ability to compete for nutrients compared with cancer cells. This work provides a bioinspired strategy to selectively impede the metabolic action of cancer cells by taking advantage of their nutrient avidity.

2.
J Nutr ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735573

RESUMEN

OBJECTIVE: This study investigates the association between consumption of ultra-processed foods and leucocyte telomere length. METHODS: This cross-sectional study utilized data from the UK Biobank, including a total of 64,690 participants. LTL was measured using Q-PCR with natural logarithmic conversion and Z-score normalization. Dietary data were collected through a 24-hour recall questionnaire from 2009 to 2010. UPFs were identified using the Nova food classification as either a continuous or a categorical variable respectively. Multiple linear regression models were employed to analyze the association between UPF consumption and LTL. RESULTS: The included participants had an average age of 56.26 years, of whom 55.2% were female. After adjusting for demographic and health-related variables, LTL exhibited a decrease of 0.005 (95% CI:-0.007,-0.002) with one UPF serving increase. Compared to participants consuming ≤3.5 servings/day, those consuming 3.5 to <6 servings showed a shortening of LTL by 0.025 (95% CI: -0.046, -0.003). Participants consuming 6 to ≤8 servings/day and >8 servings/day had LTL shortening of 0.032 (95% CI: -0.054, -0.011) and 0.037 (95% CI: -0.060, -0.014), respectively (P for trend=0.002). Subgroup analyses by UPF subclasses revealed that the consumption of ready-to-eat/heated food (ß=-0.010, 95% CI:-0.016,-0.004), beans and potatoes (ß=-0.027, 95% CI:-0.043,-0.012), animal-based products (ß=-0.012, 95% CI:-0.020,-0.005), artificial sugar (ß=-0.014, 95% CI:-0.025,-0.003), and beverages (ß=-0.005, 95% CI:-0.009,-0.001) showed negative associations with LTL. Conversely, breakfast cereals (ß=0.022, 95% CI:0.006,0.038) and vegetarian alternatives (ß=0.056, 95% CI:0.026,0.085) showed positive correlations with LTL. CONCLUSIONS: Our study found that a higher consumption of total UPF was associated with a shorter LTL. However, some UPFs may be associated with longer LTL, depending on their nutritional composition.

3.
Gene ; 921: 148523, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703863

RESUMEN

The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.

4.
World J Gastroenterol ; 30(16): 2195-2208, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690024

RESUMEN

As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.


Asunto(s)
Neoplasias Esofágicas , Inmunoterapia , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Inmunoterapia/métodos , Transducción de Señal/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Citocinas/metabolismo , Citocinas/inmunología , Escape del Tumor , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
5.
BMC Biol ; 22(1): 116, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764012

RESUMEN

BACKGROUND: Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS: The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS: This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.


Asunto(s)
Bacillus , Gossypium , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Bacillus/fisiología , Gossypium/microbiología , Gossypium/crecimiento & desarrollo , Ascomicetos/fisiología , Verticillium/fisiología , Filogenia , Agentes de Control Biológico
6.
Chemosphere ; 358: 142216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705403

RESUMEN

As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.


Asunto(s)
Bacterias , Reactores Biológicos , Desnitrificación , Hierro , Nitrificación , Nitrógeno , Aguas Residuales , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Bacterias/metabolismo , Hierro/metabolismo , Hierro/química , Eliminación de Residuos Líquidos/métodos , Microbiota , Aerobiosis , Amoníaco/metabolismo , Compuestos de Amonio/metabolismo
7.
Animals (Basel) ; 14(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612313

RESUMEN

As one of the most important aquaculture species in the world, the improvement of growth traits of the Pacific white shrimp (Litopenaeus vannamei), has always been a primary focus. In this study, we conducted SNP-specific locus analysis and identified a growth-related gene, BAMBI, in L. vannamei. We analyzed the structure and function of LvBAMBI using genomic, transcriptomic, metabolomic, and RNA interference (RNAi) assays. The LvBAMBI possessed highly conserved structural domains and widely expressed in various tissues. Knockdown of LvBAMBI significantly inhibited the gain of body length and weight of the shrimp, underscoring its role as a growth-promoting factor. Specifically, knockdown of LvBAMBI resulted in a significant downregulation of genes involved in lipid metabolism, protein synthesis, catabolism and transport, and immunity. Conversely, genes related to glucose metabolism exhibited significant upregulations. Analysis of differential metabolites (DMs) in metabolomics further revealed that LvBAMBI knockdown may primarily affect shrimp growth by regulating biological processes related to lipid and glucose metabolism. These results suggested that LvBAMBI plays a crucial role in regulating lipid metabolism, glucose metabolism, and protein transport in shrimp. This study provides valuable insights for future research and utilization of BAMBI genes in shrimp and crustaceans.

8.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612492

RESUMEN

The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.


Asunto(s)
Latencia en las Plantas , Sitios de Carácter Cuantitativo , Latencia en las Plantas/genética , Triticum/genética , Fitomejoramiento , Alelos
9.
Chembiochem ; : e202400239, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623847

RESUMEN

Glucose transporter protein-1 (Glut1), is highly expressed in many cancer types and plays a crucial role in cancer progression through enhanced glucose transport. Its overexpression is associated with aggressive tumor behavior and poor prognosis. Herein, the nucleic acids modified gold nanoparticles (AuNPs) was synthesized to deliver small interfering RNA (siRNA) against Glut1 by microRNA 21 (miR-21) triggers toehold-mediated strand displacement reaction for lung cancer starvation therapy. Overexpression of miR-21 triggers toehold-mediated strand displacement, releasing the siRNA to knockdown of Glut1 in cancer cell instead of normal cell. Furthermore, the glucose oxidase-like activity of the AuNPs accelerates intracellular glucose consumption, promoting cancer cell starvation. The engineered AuNPs@anti-miR-21/siGlut1 complex inhibits cancer cell proliferation, xenograft tumor growth and promotes apoptosis through glucose starvation and ROS cascade signaling, underscoring its potential as an effective therapeutic strategy for lung cancer.

10.
ACS Omega ; 9(15): 17577-17591, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645374

RESUMEN

In this study, graphene oxide (GO) was modified via electrostatic interactions and chemical grafting by silica (SiO2), and two SiO2@GO hybrids (GO-A and GO-B, respectively) with different structures were obtained and carefully characterized. Results confirmed the successful grafting of SiO2 onto the GO surface using both strategies. The distribution of SiO2 particles on the surface of GO-A was denser and more agglomerated, while it was more uniform on the surface of GO-B. Then, epoxy resin (EP)/GO composites were prepared. The curing mechanism of EP/GO composites was studied by differential scanning calorimetry and in situ infrared spectra spectroscopy. Results of tensile tests, hardness tests, dynamic mechanical analysis, and dielectric measurement revealed that EP/GO-B exhibited the highest tensile properties, with a tensile strength of 79 MPa, a 43% increase compared to raw EP. Furthermore, the addition of fillers improved the hardness of EP, and EP/GO-B showed the highest energy storage modulus of 1900 MPa. The inclusion of SiO2@GO hybrid fillers enhanced the dielectric constant, volume resistivity, and breakdown voltage of EP/GO composites. Among these, EP/GO-B displayed the lowest dielectric loss, relatively good insulation, and relatively high volume resistivity and breakdown voltage. A related mechanism was proposed.

11.
Materials (Basel) ; 17(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38591521

RESUMEN

To study the influence of multi-factors, such as long sunshine, sand erosion, and so on, in southern Xinjiang, we selected two kinds of composite insulators for the transmission lines in southern Xinjiang to study the aging characteristics of the umbrella skirt surface. The results of scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) show that the surface roughness of the umbrella skirt is high and there are a large number of micron inorganic particles. The skirt has the characteristics of low C/O element ratio and high Al element content. The results of thermogravimetric analysis and micro infrared test show that the aging depth of the Myli Line skirt after 19 years of operation is 160~190 µm and that of Yuhe Line 1 after 14 years of operation is greater than 180 µm. The plasma discharge method was used to simulate the corona discharge in the actual operation to accelerate the aging of the surface of the umbrella skirt and the hydrophobic recovery of the umbrella skirt was investigated. The results show that the temperature has a great influence on the surface hydrophobic recovery performance after plasma treatment. These results may provide some theoretical guidance and technical support for the selection, operation, and maintenance of composite insulators in Xinjiang.

12.
J Fungi (Basel) ; 10(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38667913

RESUMEN

Fusarium oxysporum f. sp. vasinfectum (Fov) is a common soilborne fungal pathogen that causes Fusarium wilt (FW) disease in cotton. Although considerable progress has been made in cotton disease-resistance breeding against FW in China, and the R gene conferring resistance to Fov race 7 (FOV) in Upland cotton (Gossypium hirsutum) has been identified, knowledge regarding the evolution of fungal pathogenicity and virulence factors in Fov remains limited. In this study, we present a reference-scale genome assembly and annotation for FOV7, created through the integration of single-molecule real-time sequencing (PacBio) and high-throughput chromosome conformation capture (Hi-C) techniques. Comparative genomics analysis revealed the presence of six supernumerary scaffolds specific to FOV7. The genes or sequences within this region can potentially serve as reliable diagnostic markers for distinguishing Fov race 7. Furthermore, we conducted an analysis of the xylem sap proteome of FOV7-infected cotton plants, leading to the identification of 19 proteins that are secreted in xylem (FovSIX). Through a pathogenicity test involving knockout mutants, we demonstrated that FovSIX16 is crucial for the full virulence of FOV7. Overall, this study sheds light on the underlying mechanisms of Fov's pathogenicity and provides valuable insights into potential management strategies for controlling FW.

13.
Biomed Pharmacother ; 175: 116661, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678965

RESUMEN

Alzheimer's disease (AD) is a global medical challenge. Studies have shown that neurotoxicity caused by pathological aggregation of ß-amyloid (Aß) is an important factor leading to AD. Therefore, inhibiting the pathological aggregation of Aß is the key to treating AD. The recombinant human HspB5-ACD structural domain protein (AHspB5) prepared by our group in the previous period has been shown to have anti-amyloid aggregation effects, but its inability to penetrate biological membranes has limited its development. In this study, we prepared a recombinant fusion protein (T-AHspB5) of TAT and AHspB5. In vitro experiments showed that T-AHspB5 inhibited the formation of Aß1-42 protofibrils and had the ability to penetrate the blood-brain barrier; in cellular experiments, T-AHspB5 prevented Aß1-42-induced oxidative stress damage, apoptosis, and inflammatory responses in neuronal cells, and its mechanism of action was related to microglia activation and mitochondria-dependent apoptotic pathway. In animal experiments, T-AHspB5 improved memory and cognitive dysfunction and inhibited pathological changes of AD in APP/PS1 mice. In conclusion, this paper is expected to reveal the intervention mechanism and biological effect of T-AHspB5 on pathological aggregation of Aß1-42, provide a new pathway for the treatment of AD, and lay the foundation for the future development and application of T-AHspB5.

14.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674638

RESUMEN

Aeromonas veronii is widespread in aquatic environments and is responsible for infecting various aquatic animals. In this study, a dominant strain was isolated from the hepatopancreas of diseased Macrobrachium rosenbergii and was named JDM1-1. According to its morphological, physiological, and biochemical characteristics and molecular identification, isolate JDM1-1 was identified as A. veronii. The results of artificial challenge showed isolate JDM1-1 had high pathogenicity to M. rosenbergii with an LD50 value of 8.35 × 105 CFU/mL during the challenge test. Histopathological analysis revealed severe damage in the hepatopancreas and gills of the diseased prawns, characterized by the enlargement of the hepatic tubule lumen and gaps between the tubules as well as clubbing and degeneration observed at the distal end of the gill filament. Eight virulence-related genes, namely aer, ompA, lip, tapA, hlyA, flgA, flgM, and flgN, were screened by PCR assay. In addition, virulence factor detection showed that the JDM1-1 isolate produced lipase, lecithinase, gelatinase, and hemolysin. Furthermore, the mRNA expression profiles of immune-related genes of M. rosenbergii following A. veronii infection, including ALF1, ALF2, Crustin, C-lectin, and Lysozyme, were assessed, and the results revealed a significant upregulation in the hepatopancreas and intestines at different hours post infection. This study demonstrates that A. veronii is a causative agent associated with massive die-offs of M. rosenbergii and contributes valuable insights into the pathogenesis and host defense mechanisms of A. veronii invasion.

15.
Radiat Prot Dosimetry ; 200(7): 677-686, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38678314

RESUMEN

The objective of this paper is to compare the differences between volumetric CT dose index (CTDIVOL) and size-specific dose estimate (SSDEWED) based on water equivalent diameter (WED) in radiation dose measurement, and explore a new method for fast calculation of SSDEWED. The imaging data of 1238 cases of head, 1152 cases of chest and 976 cases of abdominopelvic were analyzed retrospectively, and they were divided into five age groups: ≤ 0.5, 0.5 ~ ≤ 1, 1 ~ ≤ 5, 5 ~ ≤ 10 and 10 ~ ≤ 15 years according to age. The area of interest (AR), CT value (CTR), lateral diameter (LAT) and anteroposterior diameter (AP) of the median cross-sectional image of the standard scanning range and the SSDEWED were manually calculated, and a t-test was used to compare the differences between CTDIVOL and SSDEWED in different age groups. Pearson analyzed the correlations between DE and age, DE and WED, f and age, and counted the means of conversion factors in each age group, and analyze the error ratios between SSDE calculated based on the mean age group conversion factors and actual measured SSDE. The CTDIVOL in head was (9.41 ± 1.42) mGy and the SSDEWED was (8.25 ± 0.70) mGy: the difference was statistically significant (t = 55.04, P < 0.001); the CTDIVOL of chest was (2.68 ± 0.91) mGy and the SSDEWED was (5.16 ± 1.16) mGy, with a statistically significant difference (t = -218.78, P < 0.001); the CTDIVOL of abdominopelvic was (3.09 ± 1.58) mGy and the SSDEWED was (5.89 ± 2.19) mGy: the difference was also statistically significant (t = -112.28, P < 0.001). The CTDIVOL was larger than the SSDEWED in the head except for the ≤ 0.5 year subgroup, and CTDIVOL was smaller than SSDEWED within each subgroup in chest and abdominopelvic. There were strong negative correlations between f and age (head: r = -0.81; chest: r = -0.89; abdominopelvic: r = -0.86; P < 0.001). The mean values of f at each examination region were 0.81 ~ 1.01 for head, 1.65 ~ 2.34 for chest and 1.71 ~ 2.35 for abdominopelvic region. The SSDEWED could be accurately estimated using the mean f of each age subgroup. SSDEWED can more accurately measure the radiation dose of children. For children of different ages and examination regions, the SSDEWED conversion factors based on age subgroup can be quickly adjusted and improve the accuracy of radiation dose estimation.


Asunto(s)
Dosis de Radiación , Tomografía Computarizada por Rayos X , Humanos , Niño , Tomografía Computarizada por Rayos X/métodos , Preescolar , Adolescente , Lactante , Femenino , Masculino , Estudios Retrospectivos , Recién Nacido , Cabeza/diagnóstico por imagen , Cabeza/efectos de la radiación , Radiografía Torácica/métodos
16.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653845

RESUMEN

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Asunto(s)
Infecciones por Coronavirus , Deltacoronavirus , Evasión Inmune , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Deltacoronavirus/patogenicidad , Deltacoronavirus/inmunología , Deltacoronavirus/genética , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/epidemiología , Vacunas Virales/inmunología , Desarrollo de Vacunas , Humanos
17.
Foods ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540855

RESUMEN

The amount of macrolide (MAL) residues in aquatic products, including oleandomycin (OLD), erythromycin (ERM), clarithromycin (CLA), azithromycin (AZI), kitasamycin (KIT), josamycin (JOS), spiramycin (SPI), tilmicosin (TIL), tylosin (TYL), and roxithromycin (ROX), was determined using solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The residues were extracted with 1% ammonia acetonitrile solution and purified by neutral alumina adsorption. Chromatographic separation was completed on an ACQUITY UPLC BEH C18 column with acetonitrile-0.1% formic acid aqueous solution as the mobile phase, and mass spectrometry detection was performed by multiple reaction monitoring scanning with the positive mode in an electrospray ion source (ESI+). Five isotopically labeled compounds were used as internal standards for quality control purposes. The findings indicated that across the mass concentration span of 1.0-100 µg/L, there was a strong linear correlation (R2 > 0.99) between the concentration and instrumental response for the 10 MALs. The limit of detection of UPLC-MS/MS was 0.25-0.50 µg/kg, and the limit of quantitation was 0.5-1.0 µg/kg. The added recovery of blank matrix samples at standard gradient levels (1.0, 5.0, and 50.0 µg/kg) was 83.1-116.6%, and the intra-day precision and inter-day precisions were 3.7 and 13.8%, respectively. The method is simple and fast, with high accuracy and good repeatability, in line with the requirements for accurate qualitative and quantitative analysis of the residues for 10 MALs in aquatic products.

18.
Sleep Med ; 117: 18-24, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493659

RESUMEN

BACKGROUND: The relationships between sleep duration and aging-associated diseases are intricate. Leukocyte telomere length (LTL) is a biomarker of aging, while the association of sleep duration and LTL is unclear. METHODS: The 310,091 study participants from UK Biobank were enrolled in this cross-sectional study. Restricted cubic splines (RCS) analysis was firstly performed to assess the nonlinear relationship between sleep duration and LTL. Sleep duration was then categorized into three groups: <7 h (short sleep duration), 7-8 h (reference group), and >8 h (long sleep duration) and multiple linear regression was applied to analyze the association of short sleep and long sleep duration with LTL. We further performed subgroup analyses stratified by sex, age, chronotype and snoring. RESULTS: RCS showed an inverted J-shaped relationship between sleep duration and LTL. Compared with the reference group, the inverse association of long sleep duration and LTL was statistically significant in fully-adjusted model (P = 0.001). Subgroup analyses showed that this association was more apparent in people over 50 years (51-60 y: P = 0.002; >60 y: P = 0.005), in men (P = 0.022), and in people preferred evening chronotype (P = 0.001). CONCLUSION: Compared with participants sleeping 7-8 h, those sleep longer than 8 h had shorter LTL in middle-aged and young-old adults. The negative association between long sleep duration and LTL was more apparent in older people, in men, and in people preferred evening chronotype.


Asunto(s)
Duración del Sueño , Biobanco del Reino Unido , Persona de Mediana Edad , Adulto , Masculino , Humanos , Anciano , Estudios Transversales , Bancos de Muestras Biológicas , Leucocitos , Telómero
19.
Bioorg Chem ; 146: 107275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493637

RESUMEN

Early diagnosis and precise surgical intervention are crucial for cancer patients. We aimed to develop a novel positron emission tomography (PET)/fluorescence dual-modality probe for preoperative diagnosis, intraoperative guidance, and postoperative monitoring of fibroblast activation protein (FAP)-positive tumors. FAPI-FAM was synthesized and labeled with gallium-68. [68Ga]Ga-FAPI-FAM showed favorable in vivo and in vitro characteristics, specific binding affinity, and excellent tumor accumulation in FAP-positive cells and mice xenografts. Excellent tumor-to-background contrast was found owing to high tumor uptake, prolonged retention, and rapid renal clearance of [68Ga]Ga-FAPI-FAM. Moreover, a specific fluorescence signal was detected in FAP-positive tumors during ex vivo fluorescence imaging, demonstrating the feasibility of whole-body tumor detection and intraoperative tumor delineation.


Asunto(s)
Neoplasias , Quinolinas , Humanos , Ratones , Animales , Radioisótopos de Galio , Fluorescencia , Tomografía de Emisión de Positrones/métodos , Neoplasias/metabolismo , Fibroblastos/metabolismo
20.
Nanoscale ; 16(13): 6585-6595, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38465774

RESUMEN

Nicotinamide adenine dinucleotide (NADH) and its phosphorylated form, NADPH, are essential cofactors that play critical roles in cell functions, influencing antioxidation, reductive biosynthesis, and cellular pathways involved in tumor cell apoptosis and tumorigenesis. However, the use of nanomaterials to consume NAD(P)H and thus bring an impact on signaling pathways in cancer treatment remains understudied. In this study, we employed a salt template method to synthesize a carbon-coated-cobalt composite (C@Co) nanozyme, which exhibited excellent NAD(P)H oxidase (NOX)-like activity and mimicked the reaction mechanism of natural NOX. The C@Co nanozyme efficiently consumed NAD(P)H within cancer cells, leading to increased production of reactive oxygen species (ROS) and a reduction in mitochondrial membrane potential. Meanwhile, the generation of the biologically active cofactor NAD(P)+ promoted the expression of the deacetylase SIRT7, which in turn inhibited the serine/threonine kinase AKT signaling pathway, ultimately promoting apoptosis. This work sheds light on the influence of nanozymes with NOX-like activity on cellular signaling pathways in tumor therapy and demonstrates their promising antitumor effects in a tumor xenograft mouse model. These findings contribute to a better understanding of NAD(P)H manipulation in cancer treatment and suggest the potential of nanozymes as a therapeutic strategy for cancer therapy.


Asunto(s)
NADPH Oxidasas , Nanoestructuras , Sirtuinas , Animales , Humanos , Ratones , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , NAD/metabolismo , NADPH Oxidasas/farmacología , NADPH Oxidasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Nanoestructuras/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...