Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 33(44): e2104908, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523151

RESUMEN

The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.

2.
J Am Chem Soc ; 141(27): 10905-10914, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31203611

RESUMEN

Understanding the nature of phonon transport in solids and the underlying mechanism linking lattice dynamics and thermal conductivity is important in many fields, including the development of efficient thermoelectric materials where a low lattice thermal conductivity is required. Herein, we choose the pair of synthetic chalcopyrite CuFeS2 and talnakhite Cu17.6Fe17.6S32 compounds, which possess the same elements and very similar crystal structures but very different phonon transport, as contrasting examples to study the influence of lattice dynamics and chemical bonding on the thermal transport properties. Chemically, talnakhite derives from chalcopyrite by inserting extra Cu and Fe atoms in the chalcopyrite lattice. The CuFeS2 compound has a lattice thermal conductivity of 2.37 W m-1 K-1 at 625 K, while Cu17.6Fe17.6S32 features Cu/Fe disorder and possesses an extremely low lattice thermal conductivity of merely 0.6 W m-1 K-1 at 625 K, approaching the amorphous limit κmin. Low-temperature heat capacity measurements and phonon calculations point to a large anharmonicity and low Debye temperature in Cu17.6Fe17.6S32, originating from weaker chemical bonds. Moreover, Mössbauer spectroscopy suggests that the state of Fe atoms in Cu17.6Fe17.6S32 is partially disordered, which induces the enhanced alloy scattering. All of the above peculiar features, absent in CuFeS2, contribute to the extremely low lattice thermal conductivity of the Cu17.6Fe17.6S32 compound.

3.
Microsc Microanal ; 25(4): 831-839, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31084647

RESUMEN

Metal chalcogenides have attracted great attention because of their broad applications. It has been well acknowledged that microstructure can alter the intrinsic properties and performance of metal chalcogenides. The structure-property-performance relationships can be investigated at atomic scale with scanning transmission and transmission electron microscopy (STEM and TEM). Nevertheless, careful specimen preparation is paramount for accurate analyses and interpretations. In this work, we compare the effects of a variety of well-established TEM specimen preparation methods on the observed microstructure of an ingot stoichiometric lead telluride (PbTe). Most importantly, from aberration corrected STEM and first principles calculations, we discovered that argon (Ar) ion milling can lead to surface irradiation damage in the form of Pb vacancy clusters and self-interstitial atom (SIA) clusters. The SIA clusters appear as orthogonal nanoscale features when characterized along the crystal orientation of the rock salt structured PbTe. This obfuscates the interpretation of the intrinsic microstructure of metal chalcogenides, especially lead chalcogenides. We demonstrate that with sufficiently low energy (300 eV) Ar ion cleaning or appropriate high-temperature annealing, the surface damage layer can be properly cleaned and the orthogonal nanoscale features are significantly reduced. This reveals the materials' intrinsic structure and can be used as the standard protocol for future TEM specimen preparation of lead-based chalcogenide materials.

4.
ACS Appl Mater Interfaces ; 11(9): 9197-9204, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30715833

RESUMEN

Here we report that CdTe alloying and Sb doping increase the density-of-states effective mass and introduce endotaxial nanostructuring in n-type PbTe, resulting in enhanced thermoelectric performance. A prior theoretical prediction for the presence of resonance states in the conduction band of this system, however, could not be confirmed. An amount of 3 mol % CdTe alloying widens the band gap of PbTe by 50%, leading to enhanced carrier effective mass and Seebeck coefficient. This effect is even more pronounced at high temperatures where the solubility of CdTe increases. At 800 K, when the carrier concentration is the same (4 × 1019 cm-3), the Seebeck coefficient of CdTe-alloyed PbTe is -195 µV K-1, 16% higher than that of the Cd-free control sample (-168 µV K-1). Sb doping considerably increases the electron concentration of Pb0.97Cd0.03Te, giving rise to optimized power factors of ∼17 µW cm-1 K-2 at 800 K. More importantly, Sb induces strained endotaxial nanostructures evenly distributed in the matrix. These Sb-rich nanostructures account for the ∼40% reduction in the lattice thermal conductivity over the whole measured temperature range. As a result, a maximum ZT of 1.2 is attained at 750 K in 0.5 mol % Sb-doped Pb0.97Cd0.03Te alloys.

5.
J Am Chem Soc ; 140(51): 18115-18123, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30461275

RESUMEN

Thermoelectric generators can convert heat directly into usable electric power but suffer from low efficiencies and high costs, which have hindered wide-scale applications. Accordingly, an important goal in the field of thermoelectricity is to develop new high performance materials that are composed of more earth-abundant elements. The best systems for midtemperature power generation rely on heavily doped PbTe, but the Te in these materials is scarce in the Earth's crust. PbSe is emerging as a less expensive alternative to PbTe, although it displays inferior performance due to a considerably smaller power factor S2σ, where S is the Seebeck coefficient and σ is electrical conductivity. Here, we present a new p-type PbSe system, Pb0.98Na0.02Se- x%HgSe, which yields a very high power factor of ∼20 µW·cm-1·K-2 at 963 K when x = 2, a 15% improvement over the best performing PbSe- x%MSe materials. The enhancement is attributed to a combination of high carrier mobility and the early onset of band convergence in the Hg-alloyed samples (∼550 K), which results in a significant increase in the Seebeck coefficient. Interestingly, we find that the Hg2+ cations sit at an off-centered position within the PbSe lattice, and we dub the displaced Hg atoms "discordant". DFT calculations indicate that this feature plays a role in lowering thermal conductivity, and we believe that this insight may inspire new design criteria for engineering high performance thermoelectric materials. The high power factor combined with a decrease in thermal conductivity gives a high figure of merit ZT of 1.7 at 970 K, the highest value reported for p-type PbSe to date.

6.
ACS Appl Mater Interfaces ; 10(44): 38193-38200, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30299078

RESUMEN

Ultrafast synthesis of high-quality transition-metal dichalcogenide nanocrystals, such as molybdenum disulfide (MoS2), is technologically relevant for large-scale production of electronic and optoelectronic devices. Here, we report a rapid solid-state synthesis route for MoS2 using the chemically homogeneous molecular precursor, (NH4)2Mo3S13·H2O, resulting in nanoparticles with estimated size down to 25 nm only in 10 s at 1000 °C. Despite the extreme nonequilibrium conditions, the resulting porous MoS2 nanoparticles remain aggregated to preserve the form of the original rod shape bulk morphology of the molecular precursor. This ultrafast synthesis proceeds through the rapid decomposition of the precursor and rearrangement of Mo and S atoms coupled with simultaneous efficient release of massive gaseous species, to create nanoscale porosity in the resulting isomorphic pseudocrystals, which are composed of the MoS2 nanoparticles. Despite the very rapid escape of massive amounts of NH3, H2O, H2S, and S gases from the (NH4)2Mo3S13·H2O mm sized crystals, they retain their original shape as they convert to MoS2 rather than undergo explosive destruction from the rapid escape process of the gases. The obtained pseudocrystals are made of aggregated MoS2 nanocrystals exhibit a Brunauer-Emmett-Teller surface area of ∼35 m2/g with an adsorption average pore width of ∼160 Å. The nanoporous MoS2 crystals are solution processable by dispersing in ethanol and water and can be cast into large-area uniform composite films. Photodetectors fabricated from these films show more than 2 orders of magnitude higher conductivity (∼6.25 × 10-6 S/cm) and photoconductive gain (20 mA/W) than previous reports of MoS2 composite films. The optoelectronic properties of this nanoporous MoS2 imply that the shallow defects that originate from the ultrafast synthesis act as sensitizing centers that increase the photocurrent gain via two-level recombination kinetics.

7.
Nat Commun ; 7: 12167, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27456303

RESUMEN

The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system. Using non-equilibrium processing we show that hole-doped samples of PbTe can be heavily alloyed with SrTe well beyond its thermodynamic solubility limit of <1 mol%. The much higher levels of Sr alloyed into the PbTe matrix widen the bandgap and create convergence of the two valence bands of PbTe, greatly boosting the power factors with maximal values over 30 µW cm(-1) K(-2). Exceeding the 5 mol% solubility limit leads to endotaxial SrTe nanostructures which produce extremely low lattice thermal conductivity of 0.5 W m(-1) K(-1) but preserve high hole mobilities because of the matrix/precipitate valence band alignment. The best composition is hole-doped PbTe-8%SrTe.

8.
J Am Chem Soc ; 138(28): 8875-82, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27348333

RESUMEN

Recent findings about ultrahigh thermoelectric performance in SnSe single crystals have stimulated related research on this simple binary compound, which is focused mostly on its polycrystalline counterparts, and particularly on electrical property enhancement by effective doping. This work systematically investigated the thermoelectric properties of polycrystalline SnSe doped with three alkali metals (Li, Na, and K). It is found that Na has the best doping efficiency, leading to an increase in hole concentration from 3.2 × 10(17) to 4.4 × 10(19) cm(-3) at room temperature, accompanied by a drop in Seebeck coefficient from 480 to 142 µV/K. An equivalent single parabolic band model was found adequate to capture the variation tendency of Seebeck coefficient with doping levels within a wide range. A mixed scattering of carriers by acoustic phonons and grain boundaries is suitable for numerically understanding the temperature-dependence of carrier mobility. A maximum ZT of ∼0.8 was achieved in 1% Na- or K-doped SnSe at 800 K. Possible strategies to improve the mobility and ZT of polycrystals were also proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...