Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 131115, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522691

RESUMEN

A cellulose-reinforced eutectogel was constructed by deep eutectic solvent (DES) and cotton linter cellulose. Cellulose was dispersed in the ternary DES consisting of acrylic acid, choline chloride and AlCl3·6H2O. The photoinitiator was then introduced into the system to in situ polymerize acrylic acid monomer to form transparent and ionic conductive eutectogels while keeping all the DES. The crosslinks formed by Al3+ induced ionic bonds and reversible links formed by hydrogen bonds give the eutectogels high stretchability (3200 ± 200 % tensile strain), self-adhesive (52.1 kPa to glass), self-healing and good mechanical strength (670 kPa). The eutectogels were assembled into sensors and epidermal patch electrodes that demonstrated high quality human motion sensing and physiological signal detection (electrocardiogram and electromyography). This work provides a facile way to design flexible electronics for sensing.


Asunto(s)
Acrilatos , Celulosa , Humanos , Colina , Conductividad Eléctrica
2.
Sci Total Environ ; 922: 170736, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38325475

RESUMEN

Oil extraction leads to environmental pollution from the oilfields and dweller activities, however, knowledge of the concentration distributions, migration, secondary formation and toxicity of nitrated/oxygenated polycyclic aromatic hydrocarbons (N/OPAHs) in oilfield regions is limited. In this research, atmospheric and soil samples in 7 different location types in an important oil industrial base in China were gathered. The ΣNPAHs and ΣOPAHs in the air ranged from 0.05 to 2.47 ng/m3 and 0.14-22.72 ng/m3, respectively, and in soil ranged from 0.22 to 17.81 ng/g and 9.69-66.86 ng/g, respectively. Both NPAHs and OPAHs in the atmosphere exhibited higher concentrations during winter. The atmospheric NPAH concentrations decreased exponentially with distance from urban area especially in the summer, revealing the impact of vehicles on the air in the Yellow River Delta area. High NPAH and OPAH concentrations were found only in soil near oil extraction facilities, indicating that the impact of oil extraction is limited to the soil near the extraction facilities. The air-soil exchanges of N/OPAHs were assessed through fugacity fraction analysis, and NPAHs were in the equilibrium-deposition state and OPAHs were in the net-deposition state in the winter. Higher incremental lifetime cancer risk (ILCR) occurred at the urban, industrial, and oilfield sites in the atmospheric samples, and the soil samples had the largest ILCR values in the oilfield sites. However, ILCR values for both air and soil did not exceed the threshold of 10-6.

3.
Langmuir ; 40(10): 5288-5296, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38417256

RESUMEN

A kind of ionic conductive gel (also named eutectogel) is developed from an inorganic salt (ZnCl2)-based deep eutectic solvent (DES). The ternary DES consists of ZnCl2, acrylic acid, and water, and cotton linter cellulose is introduced into the DES system to tailor its mechanical and conductive properties. Enabled by the extensive hydrogen bonds and ion-dipole interactions, the obtained eutectogel displays superior ionic conductivity (0.33 S/m), high stretchability (up to 2050%), large tensile strength (1.82 MPa), and wide temperature tolerance (-40 to 60 °C). In particular, the water-induced coordination interactions can tune the strength of hydrogen/ionic bonds in the eutectogels, imparting them with appealing humidity sensing ability in complex and extreme conditions.

4.
Cell Cycle ; 23(2): 169-187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38267823

RESUMEN

IL-33 has been associated with pro- and anticancer functions in cancer. However, its role in pancreatic cancer metastasis remains unknown. This study aimed to explore the role of miR-548t-5p/IL-33 axis in the metastasis of pancreatic cancer. Luciferase activity assay, qRT-PCR, Western blot and ELISA were performed to prove whether IL-33 is the target of miR-548t-5p. In vivo metastasis assay and cellular transwell assay were performed to explore the role of miR-548t-5p/IL-33 axis in the invasion and metastasis of pancreatic cancer. Co-culture experiments and immunohistochemistry were performed to observe whether IL-33 affects cell invasion and metastasis dependent on the involvement of M2 macrophages. THP-1 cell induction experiment and flow cytometry were performed to explore the effect of IL-33 on macrophage polarization. CCK-8, colony formation, cell apoptosis, cell cycle, cell wound healing and transwell assay were performed to investigate the effect of IL-33 induced M2 macrophages on cell malignant biological behavior by coculturing pancreatic cancer cells with the conditioned medium (CM) from macrophages. We found that miR-548t-5p regulated the expression and secretion of IL-33 in pancreatic cancer cells by directly targeting IL-33 mRNA. IL-33 secreted by cancer cells promoted the recruitment and activation of macrophages to a M2-like phenotype. In turn, IL-33 induced M2 macrophages promoted the migration and invasion of cancer cells. Moreover, IL-33 affected pancreatic cancer cell invasion dependent on the involvement of M2 macrophages in the co-culture system. Thus, our study suggested that manipulation of this IL-33-dependent crosstalk has a therapeutic potential for the treatment of pancreatic cancer metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Regulación Neoplásica de la Expresión Génica , Interleucina-33 , Macrófagos , MicroARNs , Neoplasias Pancreáticas , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Interleucina-33/metabolismo , Interleucina-33/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Macrófagos/metabolismo , Animales , Línea Celular Tumoral , Metástasis de la Neoplasia , Movimiento Celular/genética , Invasividad Neoplásica , Ratones , Apoptosis/genética , Técnicas de Cocultivo , Ratones Desnudos , Proliferación Celular/genética , Células THP-1
5.
Carbohydr Polym ; 327: 121695, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171664

RESUMEN

Interfacial evaporation through hydrogel-based evaporators is emerging as a sustainable and cost-effective strategy for drinkable water production. Herein, a specially designed bi-layer hydrogel evaporator was fabricated and used for efficient solar water desalination. With cotton linter as cellulose precursor, it was dispersed in a highly concentrated ZnCl2 (65 %) solution, and cross-linked by epichlorohydrin to prepare cellulose composite hydrogel. After removing inorganic salts by salt-leaching, polyaniline (PANi) with broadband and wide-range light absorption was then integrated into the top surface of hydrogel through in situ polymerization to construct a bi-layer evaporator. As a solar evaporator, the water could be evaporated with a low-energy demand, and the heat from the sunlight could be confined at the interface to achieve efficient water evaporation. Therefore, the hydrogel evaporator demonstrates an optimal water evaporation rate of 3.02 kg m-2 h-1 and photothermal conversion efficiency of 89.09 % under 1 sun (1 kW m-2) irradiation. This work provides new possibilities for efficient solar water purification systems with assured water quality.

6.
Ecotoxicol Environ Saf ; 265: 115494, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742577

RESUMEN

A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2-3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4-7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution.

7.
Carbohydr Polym ; 319: 121161, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567705

RESUMEN

Hydrogels are emerging materials for solar steam generation to alleviate water scarcity. Herein, a semiconductor of copper sulfide (CuS) was integrated into cellulose hydrogel to fabricate a solar steam evaporator. Sustainable and low-cost cotton linter (cellulose) was regenerated by NaOH/urea solvent. Epichlorohydrin was added as a cross-linking agent to enhance the mechanical robustness of the composite hydrogel, and CuS crystals were tightly attached to cellulose fibers and uniformly distributed in the hydrogel matrix. Under simulated solar light, a heating zone was established at the top surface of the composite hydrogel, and CuS can efficiently absorb and convert light into heat. The hydrophilic cellulose network affords an adequate water supply and a low water vaporization enthalpy. By tuning the CuS loadings, the optimized evaporation rate and solar-to-vapor efficiency could reach 2.2 kg/m2/h and 87 %, respectively, under 1 sun irradiation. The evaporation rate remained above 2.1 kg/m2/h after 48 h of irradiation. Moreover, the hydrogels (with a CuS loading of 30 wt%) showed a efficiently photocatalytic degradation of 95 % for methylene blue and 92 % for Rhodamine B. Such functional hydrogel evaporator holds great potential for practical water treatment and solar-driven applications.

8.
Toxics ; 11(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37368640

RESUMEN

The knowledge of the spatial distribution, sources, and air-soil exchange of polycyclic aromatic compounds (PACs) in an oilfield area is essential to the development of effective control practices of PAC pollution. In this study, 48 passive air samples and 24 soil samples were collected during 2018-2019 in seven functional areas (e.g., urban, oil field, suburban, industrial, agricultural, near pump units, and background) in the Yellow River Delta (YRD) where the Shengli Oilfield is located, and 18 parent polycyclic aromatic hydrocarbons (PAHs) and five alkylated-PAHs (APAHs) were analyzed from all the air and soil samples. The ΣPAHs in the air and soil ranged from 2.26 to 135.83 ng/m3 and 33.96 to 408.94 ng/g, while the ΣAPAHs in the atmosphere and soil ranged from 0.04 to 16.31 ng/m3 and 6.39 to 211.86 ng/g, respectively. There was a downward trend of atmospheric ΣPAH concentrations with increasing the distance from the urban area, while both ΣPAH and ΣAPAH concentrations in the soil decreased with distance from the oilfield area. PMF analyses show that for atmospheric PACs, coal/biomass combustion was the main contributor in urban, suburban, and agricultural areas, while crude production and processing source contributes more in the industrial and oilfield area. For PACs in soil, densely populated areas (industrial, urban, and suburban) are more affected by traffic sources, while oilfield and near-pump unit areas are under the impact of oil spills. The fugacity fraction (ff) results indicated that the soil generally emitted low-molecular-weight PAHs and APAHs and act as a sink for high-molecular-weight PAHs. The incremental lifetime cancer risk (ILCR) of Σ(PAH+APAH) in both the air and soil, were below the threshold (≤10-6) set by the US EPA.

9.
Phytother Res ; 37(9): 4076-4091, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37156642

RESUMEN

Molecular-targeted therapy has shown its effectiveness in pancreatic cancer, while single-targeted drug often cannot provide long-term benefit because of drug resistance. Fortunately, multitarget combination therapy can reverse drug resistance and achieve better efficacy. The typical treatment characteristics of traditional Chinese medicine monomer on tumor are multiple targets, with small side effects, low toxicity, and so forth. Agrimoniin has been reported to be effective on some cancers, while the mechanism still needs to be clarified. In this study, we used 5-ethynyl-2'-deoxyuridine, cell counting kit-8, flow cytometry, and western blot experiments to confirm that agrimoniin can significantly inhibit the proliferation of pancreatic cancer cell PANC-1 by inducing apoptosis and cell cycle arrest. In addition, by using SC79, LY294002 (the agonist or inhibitor of AKT pathway), and U0126 (the inhibitor of ERK pathway), we found that agrimoniin inhibited cell proliferation by simultaneously inhibiting AKT and ERK pathways. Moreover, agrimoniin could significantly increase the inhibitory effect of LY294002 and U0126 on pancreatic cancer cells. Meanwhile, in vivo experiments also supported the above results. In general, agrimoniin is a double-target inhibitor of AKT and ERK pathways in pancreatic cancer cells; it is expected to be used as a resistance reversal agent of targeted drugs or a synergistic drug of the inhibitor of AKT pathway or ERK pathway.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis
10.
Int J Biol Macromol ; 240: 124438, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060973

RESUMEN

Cellulose-based ionic conductive hydrogels (ICHs) have found extensive applications in flexible electronics and multifunctional sensors. However, simultaneous realization of sufficient conductivity, superior mechanical property and extreme environment tolerance for ICHs remains to be a huge challenge. In this work, a facile one-pot approach was developed to fabricate ICHs by directly dissolving cotton linter cellulose and polyvinyl alcohol (PVA) in a concentrated ZnCl2 solution. By regulating the content of PVA in ICHs, the optimal hydrogel (Gel-5) exhibits a tensile strength of 0.30 MPa, a compressive strength of 2.05 MPa and a conductivity of 8.16 S m-1. Moreover, the resulting dual-network ICHs present high transparency, good thermal reversibility and desirable ionic conductivity. Due to the high concentration of inorganic salts in the porous dual-network structure, the ICH presents good anti-drying and anti-freezing (as low as -90 °C) properties. Such hydrogel can be assembled into multi-functional sensors for human motion and temperature monitoring, and they demonstrate durable sensitivity, cycling stability in a wide operating temperature. This work will shed light on the design of cellulose-based hydrogels with good ionic conductivity and mechanical performance under extreme conditions.


Asunto(s)
Celulosa , Desecación , Humanos , Temperatura , Fuerza Compresiva , Conductividad Eléctrica , Hidrogeles , Alcohol Polivinílico
11.
Biomed Pharmacother ; 161: 114460, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36870282

RESUMEN

Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , MAP Quinasa Quinasa 3/genética , MAP Quinasa Quinasa 3/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Int J Biol Macromol ; 230: 123425, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706872

RESUMEN

Ionic conducting hydrogels (ICHs) are emerging materials for multi-functional sensors in the fields of healthcare monitoring and flexible electronics. However, there is a long-standing dilemma between ionic conductivity and mechanical properties of the ICHs. In this work, ionic conductive, flexible, transparent, and anti-freezing hydrogels are fabricated by dissolving cotton linter pulp in ZnCl2/CaCl2 solution and cross-linking with epichlorohydrin (ECH). The presence of inorganic salt imparts the hydrogel with high ionic conductivity and low-temperature tolerance. While the introduction of ECH as the second network gives the hydrogel with desirable mechanical performance. By tailoring the ECH addition, the tensile strength, compressive strength, elongation at break, and conductivity of the hydrogel could reach 0.82 MPa, 2.80 MPa, 260 %, and 5.48 S m-1, respectively. The prepared ICHs are fabricated into sensors for detecting full-range human body motions, and they demonstrate fast response and durable sensitivity to both tensile strain and compressive deformation. Moreover, flexible sensors can work at subzero temperatures. This work provides a new idea for the preparation of cellulose-based hydrogels with good ionic conductivity and mechanical properties under extreme conditions.


Asunto(s)
Celulosa , Hidrogeles , Humanos , Frío , Fuerza Compresiva , Conductividad Eléctrica , Epiclorhidrina
13.
J Colloid Interface Sci ; 629(Pt A): 182-188, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36067597

RESUMEN

The severe indoor/outdoor air contamination caused by hazardous particulate matters (PMs) has a devastating impact on the environment and human health. Herein, air filters fabricated from delignified wood aerogels and metal-organic frameworks (MOFs) were used for PM removal. Two specially designed MOFs (i.e. Zn-based ZIF-L and Zr-based UiO-66-NH2) were deposited into a highly porous wood matrix through in situ growth approach. The MOF crystals are attached tightly to the highly available cellulose surface groups and distributed uniformly. The integration of MOFs can regulate the aerogel morphology and surface property, leading to enhanced PM removal performance. Bare wood aerogels beard removal efficiencies of 70.7% and 75.0% for PM2.5 and PM10, with a low-pressure drop of 15 Pa. By contrast, ZIF-L decorated wood aerogels exhibited PM2.5 and PM10 removal efficiencies of 97.6% and 99.5%, respectively, which are ascribed to the increased interception/impaction of PMs with the positively charged ZIF-L layer. While UiO-66-NH2 functionalized wood aerogels demonstrated PM2.5 and PM10 removal efficiencies of 96.4% and 98.9% because of the hierarchical filter matrix and the presence of polar -NH2 groups. Moreover, MOF modified wood aerogels can be easily regenerated and superior reusability can be achieved. This work provides an effective and economic strategy for the preparation of air filters from renewable materials.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/química , Material Particulado , Madera , Celulosa
14.
Emerg Med Int ; 2022: 4156489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959219

RESUMEN

Purpose: Acute ischemic stroke (AIS) is a devastating disease and remains the leading cause of death and disability. This retrospective study aims to investigate associations between systemic immune-inflammation index (SII) and all-cause mortality in patients with AIS. Patients and Methods. We used the data from Medical Information Mart for Intensive Care IV. A total of 1,181 patients with acute ischemic stroke (AIS) were included. Systemic immune-inflammation index (SII) was calculated as platelet count (/L) × neutrophil count (/L)/lymphocyte count (/L). The main outcomes were 30-day all-cause mortality. The association between SII with mortality was evaluated using the Cox proportional hazards regression model. Results: After adjusting for potential covariates, the highest quartiles of SII versus the lowest quartiles of SII, the HR was 2.74 (CI 1.79-4.19, P < 0.001). Log-transformed SII was significantly associated with 30-day all-cause mortality (HR 2.44; CI 1.72-3.46, P < 0.001). Furthermore, we found that there is a nearly linear relationship (P=0.265) between logarithmic transformed SII with all-cause mortality. Conclusion: Elevated SII of patients with acute ischemic stroke increased the risk of 30-day all-cause mortality. SII may serve as a useful marker to elucidate the role of thrombocytosis, inflammation, and immunity interaction in the development of AIS.

15.
Front Oncol ; 12: 833814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875069

RESUMEN

Ferroptosis is a new type of iron-dependent programmed cell death. In recent years, its role in the diagnosis and treatment of multiple tumors, including non-small cell lung cancer (NSCLC), has been continuously observed. The relationship between the ferroptosis-related genes and the prognosis of patients with NSCLC needs to be clarified. In this study, The Cancer Genome Atlas (TCGA) and the Gene Expression Synthesis database (Gene Expression Omnibus, GEO) were used to build a model of ferroptosis-related differentially expressed genes (DEGs). A total of 101 ferroptosis-related DEGs were screened using R language, and a 12-gene signature was finally established through univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis. According to the risk scores, the patients were divided into a high-risk or a low-risk group, with patients in the low-risk group showing better prognosis. AURKA, one of the genes in the 12-gene signature, was found to be highly expressed in tumors. In addition, further study verified AURKA to be a negative regulator of ferroptosis in NSCLC cells. Ophiopogonin B (OP-B) had been reported to induce apoptosis, mitotic catastrophe, and autophagy in NSCLC cells. Herein, proteomic sequencing analysis and OP-B administration revealed the upregulation of AURKA and the downregulation of PHKG2 and SLC7A5 in the 12-gene signature, indicating that OP-B induced ferroptosis in NSCLC. Determination of the concentrations of malondialdehyde (MDA), glutathione (GSH), and intracellular iron and the mitochondrial membrane potential (MMP) confirmed the induction of ferroptosis by OP-B in vitro. Furthermore, transmission electron microscopy (TEM) examination of lung cancer xenotransplantation in nude mice confirmed that OP-B induced ferroptosis in vivo. Further study of the molecular mechanism showed that the ferroptosis effect caused by OP-B can be partially reversed by the overexpression of AURKA. Overall, our study established a new ferroptosis-related risk prediction model for the prognosis of patients with NSCLC, revealed the enrichment pathways of ferroptosis in NSCLC, and discovered the negative regulation of AURKA in ferroptosis. On this basis, we demonstrated that OP-B can induce ferroptosis in NSCLC and clarified the specific molecular mechanism of OP-B inducing ferroptosis by regulating the expression of AURKA.

16.
Int J Biol Macromol ; 217: 428-434, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35843394

RESUMEN

It is still a challenge to find an effective solvent system that can simultaneously dissolve the cellulose and lignin in biomass residues to fabricate lignocellulose hydrogels (LHs). Herein, corncob residues from furfural production were pretreated with alkaline peroxide to regulate the lignin content. The lignin/cellulose composites with various lignin content were then dissolved and regenerated by a green and facile ZnCl2/CaCl2 solvent system. The inorganic salt solvents were served as linkers and flexible LHs were obtained. Substrate material containing 10.75% lignin shows the best compressive stress (76.71 kPa). Inspired by its superior ionic conductivity, the hydrogels were assembled into a solid-state electrolyte for a zinc-ion hybrid supercapacitor. This research develops a feasible, simple, and low-cost route for lignin-containing hydrogel preparation and offers insights into the high-value application of agro-industrial lignocellulosic wastes.


Asunto(s)
Lignina , Zea mays , Biomasa , Celulosa/química , Hidrogeles , Lignina/química , Solventes/química
17.
Sci Total Environ ; 822: 153542, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35101518

RESUMEN

Some derivatives of polycyclic aromatic hydrocarbons (PAHs) such as chlorinated and brominated PAHs (Cl/BrPAHs), nitrated and oxygenated PAHs (N/OPAHs) have attracted significant concern due to their high toxicity. Knowledge of the profiles, formation mechanisms, and potential sources of these toxic chemicals near the industrial complexes is essential for their pollution control and management. In this study, we monitored Cl/BrPAHs, N/OPAHs, and PAHs at 24 sampling sites near a heavily industrialized area (steel, chemical, and rubber plants) using passive air samplers during the heating period (7 December 2019 to 15 April 2020) and the non-heating period (2 June 2020 to 4 October 2020). The total average concentrations of 16 BrPAHs, 8 ClPAHs, 17 NPAHs, 6 OPAHs, and 18 PAHs during both sampling periods were 471 pg/m3, 229 pg/m3, 312 pg/m3, 2120 pg/m3, and 63.1 ng/m3, respectively. Except for NPAHs, BrPAHs, ClPAHs, OPAHs, and PAHs all showed higher levels during the heating period. The spatial distributions of Cl/BrPAHs, N/OPAHs, and PAHs exhibited a similar pattern, with the highest concentrations detected in the vicinity of the steel industry. Congener profiles of PAH derivatives indicated that mono-substituted low molecular weight compounds (2-3 rings) were dominant. The major formation mechanisms of halogenated PAHs were discussed by correlation analysis and relative Gibbs free energies, and direct bromination of parent PAHs could be the major formation mechanism of BrPAHs in this study. Diagnostic ratios showed that NPAHs were mainly derived from primary emissions, but the contribution of secondary formation was increased at heavily contaminated sites. The positive matrix factorization model extracted four Cl/BrPAHs, three N/OPAHs, and four PAHs factors, and the result showed that PAHs and their derivatives mainly derived from industrial and combustion sources, photochemical reactions, vehicle emissions, and crude oil volatilization, etc.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , China , Monitoreo del Ambiente , Nitratos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
18.
Bioresour Technol ; 347: 126723, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063623

RESUMEN

Green and low cost deep eutectic solvents (DESs) are promising to replace the solid acids and ionic liquids in biomass fractionation process. To enhance the lignocellulose pretreatment efficiency, an acidic DES that composed of Brønsted acid (ZnCl2) as hydrogen bond acceptor and Lewis acid (lactic acid) as hydrogen bond donator was designed. This bifunctional DES was used for the extraction of lignin from poplar sawdust. Under the optimal pretreatment condition, the ZnCl2-lactic acid DES could recover 95.2 wt% of lignin with a purity of 92.1%. The recovered lignin demonstrated a low polydispersity of 1.67 and small amount of ß-aryl-ethers. Moreover, the acidic DES had a good recyclability and reusability. Such performance was attributed to the presence of bifunctional acid sites, which help selectively cleave lignin-carbohydrate complex linkages. The acidity and polarity of Brønsted acid can be modulated by the Lewis acid, thus synergistically promote the lignin extraction and production.


Asunto(s)
Ácidos de Lewis , Lignina , Biomasa , Disolventes Eutécticos Profundos , Solventes
19.
J Cancer ; 13(2): 715-727, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069914

RESUMEN

Drug resistance has become the main reason for the failure of tumor chemotherapy. Radix Ophiopogon Japonicus has long been used as traditional Chinese medicine to treat pulmonary disease, and Ophiopogonin B (OP-B) as a bioactive component of it has also been verified to inhibit cell proliferation of various non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Therefore, we wonder whether OP-B is also effective to drug resistant lung cancer cells. Firstly, Cell Counting Kit-8 (CCK8) assay was used to compare the sensitivity of OP-B on NCI-H460, A549, cisplatin resistant A549 (A549/DDP) and paclitaxel resistant A549 (A549/PTX) cells, and A549/DDP cells were shown to be more sensitive to OP-B than other three cell lines, the results were further verified in orthotopic tumor nude mice model and zebrafish tumor model. Moreover, observation of cell morphological feature, mitochondrial membrane potential, LDH release rate, and production of IL-1ß all suggested that OP-B induced pyroptosis in A549/DDP cells more significantly than that in A549 cells. Meanwhile, transcriptomic sequencing results between OP-B treated and the Mock A549/DDP group also suggested that OP-B induced more significant Caspase-1/GSDMD dependent pyroptosis in A549/DDP group, which was further verified by VX-765, the inhibitor of Caspase-1. Together, the experimental results suggested that OP-B alleviated DDP resistance of A549 cells through inducing more significant Caspase-1/GSDMD-dependent pyroptosis.

20.
Carbohydr Polym ; 275: 118695, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742422

RESUMEN

Petroleum-based plastics have raised great environmental concerns from the beginning of their production to the end-of-life cycle. It is urgently needed to develop sustainable and green materials with certain plastic properties. Herein, biobased cellulose films are fabricated from low quality cotton cellulose by manipulating its hydrogen bonding network with green solvents. The cellulose is dispersed in inorganic salts (ZnCl2/CaCl2) to form ionic hydrogels, and then transformed into tough and flexible films through ethanol exchange and air drying. Without extra hot-pressing treatment, the aggregate structure of cellulose is re-organized with the disruption and re-construction of hydrogen bonds. Benefiting from the densely packed structure and highly in-plane orientation, the cellulose film presents outstanding optical, thermal and mechanical properties. Such cellulose materials hold a potential for plastic replacement in the field of biodegradable packing.


Asunto(s)
Celulosa/química , Hidrogeles/química , Plásticos/química , Solventes/química , Biodegradación Ambiental , Cloruro de Calcio/química , Cloruros/química , Etanol/química , Gossypium/química , Tecnología Química Verde/métodos , Enlace de Hidrógeno , Líquidos Iónicos/química , Resistencia a la Tracción , Compuestos de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...