Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
World J Gastrointest Oncol ; 16(8): 3732-3737, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171188

RESUMEN

The primary aim of this study was to analyze the evolving trends and key focal points in research on cellular metabolism of colorectal cancer (CRC). Relevant publications on cellular metabolism in CRC were sourced from the Science Citation Index Expanded within the Web of Science Core Collection database. Bibliometric analysis and visualization were conducted using VOSviewer (version 1.6.18) software and CiteSpace 6.1.R6 (64-bit) Basic. A comprehensive compilation of 4722 English-language publications, covering the period from January 1, 1991 to December 31, 2022, was carefully identified and included in the analysis. Among the authors, "Ogino, Shuji" contributed the most publications in this field, while "Giovannucci, E" garnered the highest number of citations. The journal "Cancer Research" ranked first in both publication volume and citations. Institutionally, "Shanghai Jiao Tong University" emerged as the top contributor in terms of published articles, while "Harvard University" led in citation impact. In country-based analysis, the United States held the top position in both publication output and citations, closely followed by China. The increasing recognition of the significance of cellular metabolism in CRC underscores its potential for novel therapeutic approaches aimed at improving CRC management and prognosis.

2.
Biomed Pharmacother ; 178: 117172, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128188

RESUMEN

Obesity has shown a global epidemic trend. The high-lipid state caused by obesity can maintain the heart in a prolonged low-grade inflammatory state and cause ventricular remodeling, leading to a series of pathologies, such as hypertrophy, fibrosis, and apoptosis, which eventually develop into obese cardiomyopathy. Therefore, prolonged low-grade inflammation plays a crucial role in the progression of obese cardiomyopathy, making inflammation regulation an essential strategy for treating this disease. Cyy-272, an indazole derivative, is an anti-inflammatory compound independently synthesized by our laboratory. Our previous studies revealed that Cyy-272 can exert anti-inflammatory effects by inhibiting the phosphorylation and activation of C-Jun N-terminal kinase (JNK), thereby alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI). The current study aimed to evaluate the potential of Cyy-272 to mitigate the occurrence and progression of obese cardiomyopathy through the inhibition of the JNK signaling pathway. Our results indicate that the compound Cyy-272 has encouraging therapeutic effects on obesity-induced cardiac injury. It significantly inhibits inflammation in cardiomyocytes and heart tissues induced by high lipid concentrations, further alleviating the resulting hypertrophy, fibrosis, and apoptosis. Mechanistically, the protective effect of Cyy-272 on obese cardiomyopathy can be attributed to its direct inhibition of JNK protein phosphorylation. In conclusion, we identified a novel compound, Cyy-272, capable of alleviating obese cardiomyopathy and confirmed that its effect is achieved through direct inhibition of JNK.

3.
Biosens Bioelectron ; 261: 116522, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924815

RESUMEN

Molecular detection of nucleic acid plays an important role in early diagnosis and therapy of disease. Herein, a novel and enhanced electrochemical biosensor was exploited based on target-activated CRISPR/Cas12a system coupling with nanoparticle-labeled covalent organic frameworks (COFs) as signal reporters. Hollow spherical COFs (HCOFs) not only served as the nanocarriers of silver nanoparticles (AgNPs)-DNA conjugates for enhanced signal output but also acted as three-dimensional tracks of CRISPR/Cas12a system to improve the cleavage accessibility and efficiency. The presence of target DNA triggered the trans-cleavage activity of the CRISPR/Cas12a system, which rapidly cleaved the AgNPs-DNA conjugates on HCOFs, resulting in a remarkable decrease of the electrochemical signal. As a proof of concept, the fabricated biosensing platform realized highly sensitive and selective detection of human papillomavirus type 16 (HPV-16) DNA ranging from 100 fM to 1 nM with the detection limit of 57.2 fM. Furthermore, the proposed strategy provided a versatile and high-performance biosensor for the detection of different targets by simple modification of the crRNA protospacer, holding promising applications in disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN Viral , Técnicas Electroquímicas , Papillomavirus Humano 16 , Nanopartículas del Metal , Estructuras Metalorgánicas , Plata , Técnicas Biosensibles/métodos , Humanos , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Plata/química , Estructuras Metalorgánicas/química , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/aislamiento & purificación , ADN Viral/análisis , ADN Viral/genética , Límite de Detección
4.
Food Chem ; 457: 140182, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936131

RESUMEN

Paper chip as a representative microfluidic device has been mushroomed for rapid identification of contaminants in agro-food. However, the sensitivity and accuracy have still been challenged by inevitable background noise or interference in food matrix. Herein, we designed and fabricated a dual-mode paper chip (DPC) by assembling a patterned paper electrode with a platinum nanoparticles-treated colorimetric region through a flow channel. Dual-mode outputs were guided by an aptamer-gated UiO-66-NH2 metal-organic frameworks (MOFs). UiO-66-NH2 loaded with 3, 3', 5, 5'-tetramethylbenzidine (TMB) was controlled by a switch comprised of CdS quantum dots-aptamer. Aflatoxin B1 (AFB1, a kind of carcinogenic mycotoxin) target came and induced TMB release, triggering colorimetric and ECL signals on DPC, ultra-high sensitivity with a detection limit of 7.8 fg/mL was realized. The practicability of the DPC was also confirmed by spiking AFB1 in real corn samples. This portable paper-based device provides an ideal rapid detection platform tailored for diverse food contaminants analysis.


Asunto(s)
Aflatoxina B1 , Aptámeros de Nucleótidos , Contaminación de Alimentos , Límite de Detección , Estructuras Metalorgánicas , Papel , Zea mays , Aflatoxina B1/análisis , Aptámeros de Nucleótidos/química , Contaminación de Alimentos/análisis , Estructuras Metalorgánicas/química , Zea mays/química , Colorimetría/instrumentación , Colorimetría/métodos , Platino (Metal)/química , Técnicas Biosensibles/instrumentación
5.
Anal Chim Acta ; 1311: 342743, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38816160

RESUMEN

BACKGROUND: MicroRNA (miRNA) emerges as important cancer biomarker, accurate detection of miRNA plays an essential role in clinical sample analysis and disease diagnosis. However, it remains challenging to realize highly sensitive detection of low-abundance miRNA. Traditional detection methods including northern blot and real-time PCR have realized quantitative miRNA detection. However, these detection methods are involved in sophisticated operation and expensive instruments. Therefore, the development of novel sensing platform with high sensitivity and specificity for miRNA detection is urgently demanded for disease diagnosis. RESULTS: In this work, a novel electrochemical biosensor was constructed for miRNA detection based on target-driven cascade amplified assembly of electroactive covalent organic frameworks (COFs) on tetrahedral DNA nanostructure with multiplex recognition domains (m-TDN). COFs were employed as nanocarriers of electroactive prussian blue (PB) molecules by the "freeze-drying-reduction" method without the use of DNA as gatekeeper, which was simple, mild and efficient. The target-triggered catalytic hairpin assembly (CHA) and glutathione reduction could convert low-abundance miRNA into a large amount of Mn2+. Without the addition of exogenous Mn2+, the dynamically-generated Mn2+-powered DNAzyme cleavage process induced abundant PB-COFs probe assembled on the four recognition domains of m-TDN, resulting in significantly signal output. Using miRNA-182-5p as the model target, the proposed electrochemical biosensor achieved ultrasensitive detection of miRNA-182-5p in the range of 10 fM-100 nM with a detection limit of 2.5 fM. SIGNIFICANCE AND NOVELTY: Taking advantages of PB-COFs probe as the enhanced signal labels, the integration of CHA, Mn2+-powered DNAzyme and m-TDN amplification strategy significantly improved the sensitivity and specificity of the biosensor. The designed sensing platform was capable of miRNA detection in complex samples, which provided a new idea for biomarker detection, holding promising potential in clinical diagnosis and disease screening.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , ADN , Técnicas Electroquímicas , Estructuras Metalorgánicas , MicroARNs , Nanoestructuras , MicroARNs/análisis , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Nanoestructuras/química , ADN/química , Humanos , ADN Catalítico/química , ADN Catalítico/metabolismo , Límite de Detección , Ferrocianuros/química
6.
Biomacromolecules ; 25(6): 3671-3684, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38720431

RESUMEN

Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.


Asunto(s)
Ácido Hialurónico , Estructuras Metalorgánicas , Porfirinas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Porfirinas/química , Porfirinas/farmacología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Piel/efectos de los fármacos , Humanos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Hierro/química , Fotoquimioterapia/métodos , Hialuronoglucosaminidasa
7.
BMC Anesthesiol ; 24(1): 136, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594630

RESUMEN

BACKGROUND: Adequate preoperative evaluation of the post-intubation hemodynamic instability (PIHI) is crucial for accurate risk assessment and efficient anesthesia management. However, the incorporation of this evaluation within a predictive framework have been insufficiently addressed and executed. This study aims to developed a machine learning approach for preoperatively and precisely predicting the PIHI index values. METHODS: In this retrospective study, the valid features were collected from 23,305 adult surgical patients at Peking Union Medical College Hospital between 2012 and 2020. Three hemodynamic response sequences including systolic pressure, diastolic pressure and heart rate, were utilized to design the post-intubation hemodynamic instability (PIHI) index by computing the integrated coefficient of variation (ICV) values. Different types of machine learning models were constructed to predict the ICV values, leveraging preoperative patient information and initiatory drug infusion. The models were trained and cross-validated based on balanced data using the SMOTETomek technique, and their performance was evaluated according to the mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and R-squared index (R2). RESULTS: The ICV values were proved to be consistent with the anesthetists' ratings with Spearman correlation coefficient of 0.877 (P < 0.001), affirming its capability to effectively capture the PIHI variations. The extra tree regression model outperformed the other models in predicting the ICV values with the smallest MAE (0.0512, 95% CI: 0.0511-0.0513), RMSE (0.0792, 95% CI: 0.0790-0.0794), and MAPE (0.2086, 95% CI: 0.2077-0.2095) and the largest R2 (0.9047, 95% CI: 0.9043-0.9052). It was found that the features of age and preoperative hemodynamic status were the most important features for accurately predicting the ICV values. CONCLUSIONS: Our results demonstrate the potential of the machine learning approach in predicting PIHI index values, thereby preoperatively informing anesthetists the possible anesthetic risk and enabling the implementation of individualized and precise anesthesia interventions.


Asunto(s)
Anestesia , Hemodinámica , Adulto , Humanos , Estudios Retrospectivos , Intubación Intratraqueal , Aprendizaje Automático
8.
Biosens Bioelectron ; 257: 116332, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677016

RESUMEN

In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 µM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Polímeros Impresos Molecularmente , Análisis de la Célula Individual , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Células PC12 , Técnicas Electroquímicas/métodos , Polímeros Impresos Molecularmente/química , Animales , Ratas , Nanodiamantes/química , Electrodos , Fibra de Carbono/química , Impresión Molecular/métodos , Límite de Detección , Polímeros/química
9.
Ann Jt ; 9: 10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529291

RESUMEN

Background and Objective: Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods: We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings: Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions: Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.

10.
J Cardiovasc Pharmacol ; 83(6): 588-601, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547517

RESUMEN

ABSTRACT: Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor 23 (FGF23), a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the fibroblast growth factor receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum , has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. In addition, our in vivo studies using mice on a high-phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shows promise in attenuating LVH and myocardial fibrosis associated with CKD.


Asunto(s)
Antracenos , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Fibrosis , Hipertrofia Ventricular Izquierda , Ratones Endogámicos C57BL , Miocitos Cardíacos , Perileno , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Insuficiencia Renal Crónica , Transducción de Señal , Animales , Perileno/análogos & derivados , Perileno/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Ratas , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Línea Celular , Antracenos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Fosfolipasa C gamma/metabolismo , Factores de Transcripción NFATC/metabolismo , Ratones
11.
Small ; 20(29): e2310247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368267

RESUMEN

Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.


Asunto(s)
Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Peróxido de Hidrógeno/química , Esterilización/métodos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Glucosa
12.
Chem Commun (Camb) ; 60(12): 1546-1562, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240334

RESUMEN

Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.

13.
Anal Chem ; 96(5): 1852-1860, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38279192

RESUMEN

The self-powered electrochemical sensor (SPES), an analytical sensing device without external power supply, is integrated with the dual function of power supply and detection performance, which lay the foundation for the development of intelligent and portable electrochemical sensing devices. Herein, a novel SPES based on a zinc-air battery was constructed for the detection of hydrogen sulfide (H2S) in the lysate of colon cancer cells. Typically, an Fe/Fe3C@graphene foam with oxygen reduction performance was used to construct SPES based on a zinc-air battery (ZAB-SPES), which brings the open-circuit voltage to 1.30 V. Among them, the poisoning effect of H2S causes the catalytic performance of the oxygen reduction catalyst to decrease, causing a significant decrease in the discharge voltage of ZAB. Based on this principle, ZAB-SPES was constructed for the detection of H2S using a digital multimeter. The proposed ZAB-SPES demonstrated good selectivity and reproducibility for detecting H2S compared to the results of the H2S-specific fluorescence probe. This strategy enriches the idea of constructing a self-powered sensor and a digital multimeter as detection devices, providing technical support for the portability of SPESs.

14.
J Pharm Pharmacol ; 76(2): 115-121, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150242

RESUMEN

AIM: Our study is to investigate the effects of triazole antifungal drugs on the pharmacokinetics of lorlatinib in rats. METHODS: The samples were precipitated with methanol. Chromatographic separation was performed on a ultra-performance liquid chromatography (UPLC) system using a BEH C18 column. The mobile phase consisted of 0.1% formic acid water and methanol. Lorlatinib and crizotinib (internal standard) were detected in multiple reaction monitoring mode. The fragment ions were 407.3-228.07 for lorlatinib and m/z 450.3-260.0 for crizotinib. Lorlatinib and different triazole antifungal drugs were given to Sprague Dawley rats by gavage, and blood was collected from the tail vein at a certain time point. The validated UPLC-MS/MS method was applied to a drug interaction study of ketoconazole, voriconazole, itraconazole, and posaconazole with lorlatinib in rats. RESULTS: Ketoconazole and voriconazole significantly inhibited lorlatinib metabolism. When administration with ketoconazole and voriconazole, the area under the curve from time zero to infinity of lorlatinib increased by 49.0% and 104.3%, respectively; the clearance decreased by 40.0% and 40.0%, respectively. While itraconazole and posaconazole did not affect lorlatinib pharmacokinetics. CONCLUSION: The UPLC-MS/MS-based assay is helpful to further understand the pharmacokinetics of lorlatinib in rats, and confirmed the findings that the combination of lorlatinib with CYP3A inhibitors should be avoided as predicted by our pre-clinical studies.


Asunto(s)
Aminopiridinas , Antifúngicos , Itraconazol , Lactamas , Pirazoles , Ratas , Animales , Voriconazol/farmacocinética , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cetoconazol , Crizotinib , Metanol , Triazoles , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
15.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112722

RESUMEN

Two Gram-stain-negative, rod-shaped, non-spore-forming, strictly aerobic, motile bacteria with a single polar flagellum, designated strains C1424T and C2222T, were isolated from marine alga collected from the sea shore at Yantai, PR China. Strain C1424T grew at 4-37 °C and in the presence of 1-9 % (w/v) NaCl, while strain C2222T grew at 4-32 °C with 1-6 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and concatenated amino acid sequences of 120 ubiquitous single-copy proteins showed that both strains C1424T and C2222T belonged to the genus Marinomonas, showing highest 16S rRNA gene sequence similarities to the type strains of Marinomonas primoryensis (98.1 %) and Marinomonas dokdonensis (98.1 %), respectively. The major fatty acids of the two strains were C18 : 1 ω6c and/or C18 : 1 ω7c, C16 : 1 ω6c and/or C16 : 1 ω7c and C16 : 0, their predominant polar lipids were phosphatidylethanolamine and phosphatidylglycerol, and their sole respiratory quinone was Q8. On the basis of polyphasic analyses, strains C1424T and C2222T are considered to represent two novel species within the genus Marinomonas, for which the names Marinomonas transparens sp. nov. and Marinomonas sargassi sp. nov. are proposed. The type strains are C1424T (=KCTC 72119T=MCCC 1K03601T) and C2222T (=KCTC 72120T=MCCC 1K03602T), respectively.


Asunto(s)
Ácidos Grasos , Marinomonas , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio , Ubiquinona/química , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
16.
Chinese Journal of School Health ; (12): 1083-1085, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-936543

RESUMEN

Objective@#To understand the prevalence of hyperuricemia in university students and examine associated factors,and to provide evidence for the prevention and treatment of hyperuricemia.@*Methods@#Health examination data of 11 858 students for admission in October 2021 were used to compare the detection rates between groups with different characteristics. Multivariable Logistic regression was performed to identify potential factors associated with hyperuricemia.@*Results@#A total of 3 372 cases of hyperuricemia were found, with a detection rate of 28.4%. The detection rate of male students was significantly higher than that of female students (42.4%,14.6%). The rate increased with higher BMI. Moreover, the detection rate was higher among undergraduates and those with hypertension( χ 2=1 126.2, 180.7, 138.2 ,107.9, P <0.01). Multivariable Logistic regression analysis showed that male sex, younger age, higher BMI, hypertension and higher hemoglobin level were positively associated with hyperuricemia, whereas higher glomerular filtration rate was negatively associated among the students( P <0.01).@*Conclusion@#Greater attention should be given to hyperuricemia in university students, and targeted health education should be strengthened for them, especially undergraduates, boys, overweight and obese students, and those with hypertension or high hemoglobin levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA