Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Environ Sci ; 36(10): 903-916, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37932059

RESUMEN

Objective: To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation (IR). Methods: Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237 (MLN) and/or p21 depletion by small interfering RNA (siRNA). Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator (FUCCI) system combined with histone H3 phosphorylation at Ser10 (pS10 H3) detection. Senescence was assessed using senescence-associated-ß-galactosidase (SA-ß-Gal), Ki67, and γH2AX staining. Protein expression levels were determined using western blotting. Results: Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment. The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells, ultimately leading to senescence in G1. During this process, the p53/p21 pathway is hyperactivated. Accompanying p21 accumulation, Aurora A kinase levels declined sharply. MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction. Conclusion: Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation, leading to senescence via mitotic skipping.


Asunto(s)
Aurora Quinasa A , Mitosis , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Ciclo Celular , Radiación Ionizante , ARN Interferente Pequeño/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo
2.
Environ Pollut ; 259: 113881, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31952103

RESUMEN

Coal-Gas replacement project has been implemented to decrease haze pollution in China in recent years. Airborne arsenic (As) mostly originates from coal burning processes. It is noteworthy to compare the distribution of arsenic fraction in PM2.5 before and after coal-gas replacement. Eighty PM2.5 samples were collected in Baoding in December 2016 (coal dominated year) and December 2017 (gas dominated year) at different functional areas including residential area (RA), industrial area (IA), suburb (SB), roadside (ST) and Botanical Garden Park (BG). The fraction, bioavailability and health risk of As in the PM2.5 samples were investigated and compared between these two years. Arsenic was mainly distributed in the non-specifically sorbed fraction (F1) and the residual fraction (F5). However, the proportion of F1 to the total As in 2017 was higher than that in 2016, while the proportion of As in the amorphous and poorly-crystalline hydrous oxides of Fe and Al fraction (F3) in 2017 was lower. The distributions of fraction and bioavailability showed temporal and spatial characteristics. The total concentration and bioavailability of As in SB and IA were significantly higher than those in RA, ST and BG. The BF (Bioavailability Factor) values of As ranged from 0.30 to 0.61. Health risk assessment indicated that the hazard quotient (HQ) and carcinogenic risk (CR) of As in PM2.5 significantly decreased after coal-gas replacement.


Asunto(s)
Contaminantes Atmosféricos , Arsénico , Carbón Mineral , Monitoreo del Ambiente , Gas Natural , Material Particulado , Contaminantes Atmosféricos/análisis , Arsénico/análisis , China , Carbón Mineral/análisis , Gas Natural/análisis , Material Particulado/química , Medición de Riesgo
3.
Biomed Environ Sci ; 29(7): 484-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27554118

RESUMEN

OBJECTIVE: To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. METHODS: Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-ß-galactosidase (SA-ß-gal) staining combined with Ki67 staining, a cell proliferation marker. RESULTS: Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. CONCLUSION: Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Mitosis/efectos de la radiación , Radiación Ionizante , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Interferencia de ARN , ARN Interferente Pequeño , Regulación hacia Arriba
4.
Nanoscale Res Lett ; 8(1): 294, 2013 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23800369

RESUMEN

The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

5.
Oncol Lett ; 4(5): 996-1002, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23162639

RESUMEN

In this experiment, we developed a bioprobe label for immunofluorescence using gastric tumor-specific quantum dots (QDs) to detect gastric tumor cells in vitro. The fluorescent probe, which is capable of specifically labeling gastric tumor cells, was constructed by taking advantage of the unique and superior properties of QDs. We grafted primary QDs onto the tumor-associated glycoprotein 72 (TAG-72) monoclonal antibody CC49 to produce CC49-QDs that specifically label tumor cells. Following a series of tests on the diameter and emission spectrum of CC49-QDs, they were employed in immunofluorescence analysis. Transmission electron microscopy and fluorescence spectrum analyses indicated that CC49-QDs had a 0.25 nm higher average diameter than the primary QDs, and that the grafted CC49 had no difference in optical properties compared to the primary QDs. In cell imaging, the cells labeled with CC49-QDs generated brighter fluorescence compared with the cells of the primary QD group. The results of immunofluorescence analysis demonstrated that antibody grafting reinforced the specific binding of QDs to tumor cells. This probe may also be further applied to live gastric cancer animal models to track lymphatic metastasis. In addition, it may potentially offer theoretical support for lymphadenectomy in the treatment of gastric cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...