Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675091

RESUMEN

A series of well-defined diblock copolymers, namely, 3,4-polyisoprene-block-syndiotactic-1,2-polybutadiene (3,4-PI-b-s-1,2-PBD), with a soft-hard block sequence were synthesized via an in situ sequential polymerization process using a robust iron-based catalytic system Fe(acac)3/(isocyanoimino) triptenylphosphorane (IITP)/AliBu3. This catalyst exhibits vigorous activity and temperature tolerance, achieving a polymerization activity of 5.41 × 106 g mol(Fe)-1 h-1 at 70 °C with a [IP]/[Fe] ratio of 15,000. Moreover, the quasi-living polymerization characteristics of the catalyst were verified through kinetic experiments. The first-stage polymerization of isoprene (IP) is performed at 30 °C to give a soft 3,4-PI block, and then a quantitative amount of 1,3-butadiene was added in situ to the quasi-living polymerization system to produce a second hard s-1,2-PBD. The s-1,2-PBD segments in block copolymers display a rodlike morphology contrasting with the spherulitic morphology characteristic of s-1,2-PBD homopolymers. The precise tunability of the length of the soft and hard chain segments of these novel elastic materials with the feed ratio of IP and BD, endowing them with outstanding mechanical properties and excellent dynamic mechanical properties, which are expected to be promising high-performance rubber materials.

2.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611160

RESUMEN

A family of titanium complexes (Ti1-Ti7) with the general formula LTiCl3, supported by tridentate phenoxyimine [O-NO] ligands (L1-L7) bearing bulky sidearms, were synthesized by treating the corresponding ligands with stoichiometric amount of TiCl4. All the ligands and complexes were well characterized by 1H and 13C NMR spectroscopies, in which ortho- methoxyl groups on N-aryl moieties shifted to downfield, corroborating the successful coordination reaction. Structural optimization by DFT calculations revealed that one of the phenyl groups on dibenzhydryl moiety could form π-π stacking interaction with the salicylaldimine plane, because of which the obtained titanium complexes revealed good thermal stabilities for high-temperature polymerization of ethylene. The thermal robustness of the complexes was closely related to the strength of π-π stacking interactions, which were mainly influenced by the substituents on the dibenzhydryl moieties; Ti1, Ti4 and Ti5 emerged as the three best-performing complexes at 110 °C. With the aid of such π-π stacking interactions, the complexes were also found to be active at >150 °C, although decreased activities were witnessed. Besides homopolymerizations, complexes Ti1-Ti7 were also found to be active for the high-temperature copolymerization of ethylene and 1-octene, but with medium incorporation percentage, demonstrating their medium copolymerization capabilities.

3.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959785

RESUMEN

Nd-based polydiene elastomers, including NdIR and NdBR, are regarded as indispensable key raw materials in preparing green tires with excellent performance capabilities, but their wide application is still limited by the relative higher cost of Nd precatalysts. Nd-mediated coordinative chain transfer polymerization (CCTP) of diene provides an effective strategy to reduce the precatalyst cost, because this method involves very high atom economy, i.e., each Nd molecule can generate multiple polymer chains. Nevertheless, all possible factors that could influence such CCTP behaviors are still mostly unexplored to date. In this report, the basic chemistry on the influence of external donors on the overall CCTP behaviors of isoprene was established for the first time. It was found that increasing the amount of external donors had a negative influence on the chain transfer efficiencies, resulting in gradually decreasing atom economies. Catalyst addition order studies revealed that the coordination of donors with cationic Nd active species, rather than alkylaluminium CTAs, contributed mostly to such decreased efficiencies. Moreover, it was found that when the ratio of donors and Nd compounds was higher than 1.0, the CCTP behaviors were corrupted, resulting in polymers with broad distributions, as well as resulting in low atom economies; nevertheless, when the ratio was lower than 0.5, the system still displayed CCTP characteristics, implying that the critical ratio for maintaining the CCTP was 0.5. Additionally, when such a ratio was 0.01, the high atom economy was almost the same as donor-free CCTP systems. Detailed kinetic studies at such a ratio demonstrated that the donor-contained system proceeded in a well-controlled manner, as concluded from the good linear relationship between the Mn of the PIps against the polymer yields, as well as the good linearity between the Mn against the (IP)/(Nd) ratios. Such maintained CCTP properties also allowed for seeding two-step polymerizations to prepare diblock copolymers with precisely controlled molecular weights. Expanding the types of donors to more phosphine, oxygen, and nitrogen containing compounds showed that they also affected the CCTP behaviors depending on their steric and electronic properties.

4.
Dalton Trans ; 52(46): 17104-17108, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37971360

RESUMEN

A highly efficient late-transition metal based catalytic system of α-diimine FeCl3 for well-controlled ring opening polymerization of a cheap and biobased macrolactone, ethylene brassylate (EB), is described herein. Proceeding via a coordination-insertion mechanism, such a catalytic system is capable of demonstrating unprecedented higher activities than previously reported organocatalysts or main-group metal based catalysts. Moreover, benefiting from the bulky nature of the α-diimine ligands, transesterification side reactions can be greatly suppressed, allowing the polymerization to proceed in a well-controlled living manner, as revealed from detailed kinetic studies. Additionally, such a catalytic system was also workable for ring opening copolymerization of EB and ε-caprolactone (ε-CL), giving the desired random copolymers with various compositions.

5.
J Mater Chem B ; 10(48): 10083-10096, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458579

RESUMEN

The combined use of photothermal therapy (PTT) and photodynamic therapy (PDT) could circumvent the drawbacks of each individual therapeutic strategy, resulting in an enhanced antitumor effect. However, the lack of highly effective photo-agents that are irradiation-safe in the biologically transparent window hinder the advancement of phototherapy clinically. Hence, in this study, a charge separation engineering strategy was adopted to fabricate a nanoplatform with heterojunctions, namely, in situ TiO2-loaded MXene (Ti3C2/TiO2 heterojunctions). This nanoplatform exhibited reduced bandgap (1.68 eV), enhanced NIR-II photothermal conversion efficiency (44.98%), and extended absorption edge compared to pristine TiO2 for enhanced photodynamic effect. More importantly, the proliferation of tumor cells could be efficiently inhibited at a 5 mm chicken breast depth after 1064 nm laser irradiation, and the intracellular ROS production significantly increased under 660 nm or even 1064 nm laser irradiation with heterojunctions (HJs) compared with that of TiO2. Moreover, the in vivo data further confirmed that the as-prepared heterojunctions could efficiently eradicate tumors efficiently via improved photothermal effect with NIR-II laser irradiation and upregulated ROS production. Collectively, the reported HJs strategy provides an opportunity for the success of combinational PTT and PDT therapy in tumor treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Terapia Fototérmica , Especies Reactivas de Oxígeno , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico
6.
Polymers (Basel) ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406299

RESUMEN

A family of half-titanocene complexes bearing π,π-stacked aryloxide ligands and their catalytic performances towards ethylene homo-/co- polymerizations were disclosed herein. All the complexes were well characterized, and the intermolecular π,π-stacking interactions could be clearly identified from single crystal X-ray analysis, in which a stronger interaction could be reflected for aryloxides bearing bigger π-systems, e.g., pyrenoxide. Due to the formation of such interactions, these complexes were able to highly catalyze the ethylene homopolymerizations and copolymerization with 1-hexene comonomer, even without any additiveson the aryloxide group, which showed striking contrast to other half-titanocene analogues, implying the positive influence of π,π-stacking interaction in enhancing the catalytic performances of the corresponding catalysts. Moreover, it was found that addition of external pyrene molecules was capable of boosting the catalytic efficiency significantly, due to the formation of a stronger π,π-stacking interaction between the complexes and pyrene molecules.

7.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641145

RESUMEN

Highly cis-1,4 selective (up to 98%) coordination-insertion polymerization of 1,3-butadiene (BD) has been achieved herein using acenaphthene-based α-diimine cobalt complexes. Due to the presence of intra-ligand π-π stacking interactions, the complexes revealed high thermostability, affording polybutadiene products in high yields. Moreover, all of the obtained polymers possessed a relatively narrow molecular weight distribution as well as high molecular weight (up to 92.2 × 104 Dalton). The molecular weights of the resultant polybutadienes could be finely tuned by varying polymerization parameters, including temperature, Al/Co ratio, etc. Moreover, the copolymerization of butadiene with polar monomer 2-(4-methoxyphenyl)-1,3-butadiene (2-MOPB) was also successfully realized to produce a type of polar cis-1,4 polybutadiene (cis-1,4 content: up to 98.1%) with a range of 2-MOPB content (0.46-1.83%). Water contact angle measurements indicated that the insertion of a polar monomer into a polymer chain could significantly improve the polymer's surface property.

8.
Regen Biomater ; 8(4): rbab029, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34221448

RESUMEN

Unsatisfactory drug loading capability, potential toxicity of the inert carrier and the limited therapeutic effect of a single chemotherapy drug are all vital inhibitory factors of carrier-assisted drug delivery systems for chemotherapy. To address the above obstacles, a series of carrier-free nanoplatforms self-assembled by dual-drug conjugates was constructed to reinforce chemotherapy against tumors by simultaneously disrupting intratumoral DNA activity and inhibiting mitochondria function. In this nanoplatform, the mitochondria-targeting small-molecular drug, α-tocopheryl succinate (TOS), firstly self-assembled into nanoparticles, which then were used as the carrier to conjugate cisplatin (CDDP). Systematic characterization results showed that this nanoplatform exhibited suitable particle size and a negative surface charge with good stability in physicochemical environments, as well as pH-sensitive drug release and efficient cellular uptake. Due to the combined effects of reactive oxygen species (ROS) generation by TOS and DNA damage by CDDP, the developed nanoplatform could induce mitochondrial dysfunction and elevated cell apoptosis, resulting in highly efficient anti-tumor outcomes in vitro. Collectively, the combined design principles adopted for carrier-free nanodrugs construction in this study aimed at targeting different intracellular organelles for facilitating ROS production and DNA disruption can be extended to other carrier-free nanodrugs-dependent therapeutic systems.

9.
Inorg Chem ; 60(4): 2347-2361, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33501824

RESUMEN

Increasing the thermostability of α-diimine late-transition-metal complexes and therefore rendering them more active at higher temperatures is of great importance, yet challenging for the olefin polymerization field. In the present research, a new family of α-diimine palladium complexes that can promote norbornene polymerization at high temperatures (up to 140 °C) is disclosed. Because of the conformational restriction caused by increasing the axial and equatorial bulkiness as well as the presence of intraligand H···F hydrogen bonds, N-aryl rotations can be efficiently restricted, therefore circumventing the deactivation of the active species at high temperatures. At 80-140 °C, these complexes can efficiently catalyze norbornene homopolymerizations, giving high catalytic activities up to 5.65 × 107 g of PNB per mole Ni per hour and polymers with high molecular weights up to 37.2 × 104 g/mol, which are highly superior to catalytic systems mediated by CF3-free complexes. Moreover, these complexes could also afford medium catalytic activities in the presence of polar 5-norbornene-2-carboxylic acid methyl ester (NB-COOCH3).

10.
RSC Adv ; 11(24): 14276-14284, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35423976

RESUMEN

A comb-like amphiphilic polymer (PBTF), composed of hydrophobic backbones and hydrophilic side chains, was employed to grow honeycomb coating layers in situ on a filter paper via directly casting a polymer solution and by the subsequent dynamic breath figure (BF) method. Through regulating the hydrophilic polymer side chain density and the solution concentration, a continuous honeycomb coating layer contouring to the filter paper surface profile, in addition to possessing a water contact angle (WCA) as high as 146°, was successfully fabricated. The present study also finds that increasing the hydrophilic side chain density will turn PBTF into a surfactant-like polymer, and thus, endow the PBTF solution with the capacity of numerous micro-nano-sized water droplets, rather than simply stabilizing the ordered water droplet arrays on the surface of the solution. With vast nano-sized water droplets in it, the once transparent PBTF solution changed into a translucent nano-emulsion, which demonstrates a strong Tyndall effect. While casting such nano-emulsion on a filter paper and then subjecting to the BF process, the polymeric solute takes both nano-emulsion intrinsic nano-sized water droplets and solvent evaporation-induced water droplets as templates and self-assembles into a bird-nest-like three-dimensional porous microstructure, which possesses micro-nano-sized communicating pores. By regulating the water content in the nano-emulsion, the bird-nest-like structure can be uniformly formed on the surface of the filter paper, which revealed a WCA of 152°. The coated filter papers possess selective wettability, and meanwhile, maintain the inherent permeability of the substrates, which therefore can be directly utilized as oil/water separation materials.

11.
RSC Adv ; 11(10): 5658, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35426986

RESUMEN

[This corrects the article DOI: 10.1039/C9RA06499K.].

12.
RSC Adv ; 11(38): 23184-23191, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479781

RESUMEN

Copolymerization of 1,3-butadiene with various types of phenyl substituted 1,3-butadiene derivatives, including (E)-1-phenyl-1,3-butadiene (PBD), 1-phenethyl-1,3-butadiene (PEBD), 1-(4-methoxylphenyl)-1,3-butadiene (p-MEPBD), 1-(2-methoxylphenyl)-1,3-butadiene (o-MEPBD) and 1-(4-N,N-dimethylaminophenyl)-1,3-butadiene (p-DMPBD), by using a coordination polymerization system of CpTiCl3/MAO is reported herein. Comonomers PBD and PEBD can be copolymerized with 1,3-butadiene in a large range of comonomer feed ratios (0-44.6% for PBD, 0-30.2% for PEBD), affording the targeted copolymers with well-controlled comonomer incorporations, molecular weights, polydispersities and microstructure, whereas no corresponding copolymer products were obtained under identical conditions when p-MEPBD, o-MEPBD and p-DMPBD were employed. Moreover, different polymerization parameters, including temperature, Al/Ti ratio, etc., posed a significant influence on the polymerization behaviors, as well as the properties of the resultant copolymers. Microstructure analysis by NMR spectra revealed high 1,4-selectivities of the catalysts, and the glass transition temperature (T g) of the resulted copolymer was found to be highly dependent on the incorporation content of the comonomers; with an increasing comonomer content, a gradually increasing T g was demonstrated.

13.
J Am Chem Soc ; 142(46): 19745-19753, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33147025

RESUMEN

The intrinsic poor thermal stability of layered LiNixCoyMn1-x-yO2 (NCM) cathodes and the exothermic side reactions triggered by the associated oxygen release are the main safety threats for their large-scale implantation. In the NCM family, it is widely accepted that Ni is the stability troublemaker, while Mn has long been considered as a structure stabilizer, whereas the role of Co remains elusive. Here, via Co/Mn exchange in a Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode, we demonstrate that the chemical and structural stability of the deep delithiated NCM cathodes are significantly dominated by Co rather than the widely reported Mn. Operando synchrotron X-ray characterization coupling with in situ mass spectrometry reveal that the Co4+ reduces prior to the reduction of Ni4+ and could thus prolong the Ni migration by occupying the tetrahedra sites and, hence, postpone the oxygen release and thermal failure. In contrast, the Mn itself is stable, but barely stabilizes the Ni4+. Our results highlight the importance of evaluating the intrinsic role of compositional tuning on the Ni-rich/Co-free layered oxide cathode materials to guarantee the safe operation of high-energy Li-ion batteries.

14.
J Mater Chem B ; 8(35): 7931-7940, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32779670

RESUMEN

Molecular targeted-photodynamic combinational therapy is a promising strategy to enhance antitumor effects; meanwhile, current nanocarriers face challenges of limited selective delivery and release of therapeutic agents to specific tumor sites, which significantly compromises their therapeutic efficacy. Herein, we report active-targeting, enzyme- and ROS-dual responsive nanoparticles (HPGBCA) consisting of CD44-targeting hyaluronic acid (HA) shells and afatinib (AFT)-loaded, ROS-sensitive poly(l-lysine)-conjugated chlorin e6 (Ce6) derivative nanoparticle cores (PGBCA). HPGBCA can actively carry AFT and Ce6 specifically to tumor cells due to the negatively charged HA and CD44-mediated active targeting. Subsequently, hyaluronidase in the endosome will further spur the degradation of the HA shell to prompt exposure of the positively charged PGBCA core for rapid endosomal escape and intracellular delivery of AFT and Ce6. Furthermore, the generation of ROS produced by Ce6 under NIR irradiation can trigger the rapid oxidation of the thioether linker to facilitate the release of AFT into the cytoplasm. In vitro and in vivo studies demonstrated that the released AFT and excessive ROS at the local site can synergistically induce cell apoptosis to enhance the therapeutic efficacy without side effects. Our developed intelligent nanoparticle provides new avenues to achieve on-demand, specific intracellular drug release for improved molecular targeted-photodynamic combination therapeutic efficacy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Liberación de Fármacos , Receptores ErbB/antagonistas & inhibidores , Espacio Intracelular/metabolismo , Neoplasias Pulmonares/patología , Nanopartículas/química , Inhibidores de Proteínas Quinasas/metabolismo , Afatinib/química , Afatinib/metabolismo , Afatinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Clorofilidas , Portadores de Fármacos/química , Humanos , Ácido Hialurónico/química , Luz , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Molecular Dirigida , Fotoquimioterapia , Porfirinas/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo
15.
J Hum Genet ; 65(11): 961-969, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32555313

RESUMEN

Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by recurrent respiratory infections, nasosinusitis, tympanitis, and/or male infertility, all of which can severely impair the patient's quality of life. Multiple morphological abnormalities of the sperm flagella (MMAF) is one type of severe teratozoospermia and results from a variety of flagellar defects. In this study, we conducted whole-exome sequencing to identify and evaluate the genetic lesions in two patients with potential PCD and MMAF. Biallelic mutations in exon 10, c.983G>A; p.(Gly328Asp), and exon 29, c.3532G>A; p.(Asp1178Asn), of the CFAP74 (NM_001304360) gene were identified in patient 1 (P1), and biallelic mutations in exon 7, c.652C>T; p.(Arg218Trp), and exon 35, c. 4331G>C; p.(Ser1444Thr), of the same gene were identified in patient 2 (P2). Bioinformatic analysis suggested that these variants may be disease causing. Immunofluorescence confirmed that CFAP74 was absent in these patients' sperm samples. Intracytoplasmic sperm injection (ICSI) was carried out for P1, and his wife became pregnant after embryo transfer and gave birth to a healthy baby. To the best of our knowledge, this study is the first to identify the importance of CFAP74 in potential PCD and MMAF, contributing to the genetic diagnosis of these disorders and helping to predict pregnancy outcomes relevant in in vitro fertilization.


Asunto(s)
Anomalías Múltiples/genética , Trastornos de la Motilidad Ciliar/genética , Infertilidad Masculina/genética , Teratozoospermia/genética , Anomalías Múltiples/patología , Adulto , Alelos , Trastornos de la Motilidad Ciliar/complicaciones , Trastornos de la Motilidad Ciliar/patología , Femenino , Flagelos/genética , Flagelos/patología , Predisposición Genética a la Enfermedad , Humanos , Infertilidad Masculina/complicaciones , Infertilidad Masculina/patología , Masculino , Mutación/genética , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Espermatozoides/anomalías , Espermatozoides/metabolismo , Teratozoospermia/complicaciones , Teratozoospermia/patología , Secuenciación del Exoma
16.
J Mater Chem B ; 8(23): 5109-5116, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32412025

RESUMEN

Premature leakage of drugs during blood circulation and slow drug release at the tumor site are two major challenges that nanocarriers have to overcome to achieve successful cancer therapy. Herein, a dual core-crosslinked, redox-sensitive polymeric nanogel (sDL) was constructed by the self-assembly of two star-shaped amphiphilic copolymers (4sP(EG-b-LLA)-N3, 4sP(EG-b-DLA)-N3) in the presence of a redox-sensitive crosslinker (d-ss-Bu), where hydrophilic polyethylene glycol (PEG) was used as the shell and the functional hydrophobic poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) were used as the dual crosslinked core via stereocomplex formation and chemical interactions. The dual core-crosslinked structure of the nanogels allowed for almost 2-fold enhanced doxorubicin (DOX)-loading capacity, favorable structural stability to restrict the premature leakage of therapeutic drug and smaller particle size to accelerate the internalization efficiency compared to non-crosslinked nanocarriers. Furthermore, exogenous vitamin C (Vc) can trigger the breakage of redox-sensitive bonds to accelerate drug release from nanogels for improved in vitro antitumor efficacy. Notably, in vivo near-infrared imaging showed that the highly stable DOX-loaded sDL efficiently aggregated at the tumor site. Sequential administration of DOX-loaded sDL and Vc exhibited the highest tumor inhibition effect without associated systemic toxicity compared to the corresponding single injection of Vc or DOX-loaded sDL control groups for in vivo studies, indicating that exogenous administration of Vc can synergistically impact the release of DOX from sDL. Therefore, the developed nanogels proved to be promising smart carriers for achieving precise tunable-stability in response to relevant environments and the combination of Vc to activate reduction-sensitive drug delivery is a promising approach to maximize the therapeutic efficacy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Ácido Ascórbico/química , Reactivos de Enlaces Cruzados/química , Doxorrubicina/farmacología , Nanogeles/química , Animales , Antibióticos Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
17.
RSC Adv ; 10(16): 9387-9395, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35497231

RESUMEN

A novel thermoplastic shape memory polymer (SMP) was synthesized by partly modifying the double bonds of trans-1,4-polybutadiene (TPB) and subsequently introducing mono-isocyanate as pendant groups. The comb-like chains consisted of abundant hydrogen bonds on their side groups, which could readily assemble into dynamic non-covalent polymer networks. The physical crosslink net-points formed by the hydrogen bonds were utilized to anchor the permanent shape of PBTP, while the soft trans-1,4-polybutadiene segments served as a switching phase to afford the temporary shape, and the glass transition temperature (T g) was taken as the switching temperature. The optimal result was obtained with the sample with 30% modification, which showed an excellent shape fixity ratio and inferior shape recovery ratio of 100% and 89.57%, respectively. According to the results of the stress relaxation test, the relaxation time for this sample is 27 s when heated at 70 °C, implying that the dynamic network inside the sample can undergo topological rearrangement rapidly while maintaining the network integrity during the process. The high density of exchangeable hydrogen bonds constitutes a highly crosslinked non-covalent network, the dynamic nature of which is responsible for this outstanding network topological structure rearrangement behaviour, and endows this SMP with solid-state plasticity to reconfigure its permanent shape in the absence of catalysts or moulds. The highly complex permanent shape reconfiguration at a moderate temperature within a rational period will greatly promote the practical use of SMPs, and enable a wide variety of future engineering applications.

18.
Clin Genet ; 97(2): 321-328, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31654588

RESUMEN

Acephalic spermatozoa, characterized by the headless sperm in the ejaculate, is a rare type of teratozoospermia. Here, we recruited two infertile patients with an acephalic spermatozoa phenotype to investigate the genetic pathology of acephalic spermatozoa. Whole-exome sequencing analysis was performed and found mutations in CEP112 in the two patients: homozygous mutation c.496C > T:p.(Arg166X) in exon 5 from P1; and the biallelic mutations c.2074C > T:p.(Arg692Trp) in exon 20 and c.2104C > T:p.(Arg702Cys) in exon 20 from P2. Sanger sequencing confirmed the CEP112 mutations in the two patients. In silico analysis revealed that these CEP112 mutations are deleterious and rare, and all the mutations impact the coiled-coil domain of CEP112, which may affect the protein function. The c.496C > T:p.Arg166X resulted in a truncated CEP112, which was verified by the mutation expression plasmid. The CEP112 expression was significantly reduced in the P2, suggesting the biallelic mutations c.2074C > T and c.2104C > T may affect the function and stability of CEP112. Therefore, we speculate that the loss-of-function mutations in CEP112 may be account for the human acephalic spermatozoa phenotype.


Asunto(s)
Proteínas del Citoesqueleto/genética , Infertilidad Masculina/genética , Proteínas de la Membrana/genética , Teratozoospermia/genética , Adulto , Exoma/genética , Femenino , Homocigoto , Humanos , Infertilidad Masculina/patología , Mutación con Pérdida de Función/genética , Masculino , Linaje , Fenotipo , Espermatozoides/patología , Teratozoospermia/patología , Secuenciación del Exoma
19.
Polymers (Basel) ; 11(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30960141

RESUMEN

A series of propylene-co-styrenic monomer copolymers were synthesized using the Friedel⁻Crafts alkylation reaction between chlorinated PP and substituted benzene, and the effects of these copolymers on a PP/PS (80/20) blend were investigated by using the impact test, morphology observation, thermo- and dynamic mechanical analysis, and rheology measurements. The results showed that the compatibilization efficiency varied as the variation of the substitute on the benzene ring of the styrenic monomer unit was incorporated in the PP chain in an order of methyl > ethyl > methoxyl. The copolymers bearing a crystalline isotactic polypropylene chain sequence and rubbery propylene-co-styrene-like unit chain segments may prepossess imaginable applications, giving an example for the synthesis and applications of PP-based copolymers, initiating a new way to broaden the polyolefin-based material family.

20.
RSC Adv ; 9(57): 33465-33471, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35529129

RESUMEN

Copolymerization of 1,3-butadiene with four 1-substituted 1,3-diene comonomers bearing amino and alkyoxy groups by a Ziegler-Natta iron(iii) catalytic system to access in-chain functionalized syndiotactic 1,2-polybutadiene is reported herein. The polar comonomer content can be easily regulated by varying the comonomer loadings or polymerization conditions, affording functionalized syndiotactic 1,2-polybutadiene with different amounts of functionalities. The incorporation of a polar comonomer showed little influence on the 1,2-content and stereoregularity of the resulting polymers, giving a 1,2-structure as high as ∼85% and an rrrr pentad of 81.0%. Significantly improved surface properties of the polymers was obtained after incorporation of polar comonomer, as revealed from the remarkably decreased water contact angles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...