Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 352: 141518, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387664

RESUMEN

Under the background of carbon neutrality, resource and energy utilization technologies have become the focus of future research. The paper investigated the removal efficiencies and varying characteristics of substrates and microbial community structure in the simultaneous sulfide and nitrate biological removal (SSNBR) process. The results showed that the sulfide and nitrate removal loads reached 2.998 kg m-3∙d-1 and 1.011 kg m-3∙d-1 respectively when HRT was 2.4 h. The sulfide and nitrate molar ratios (S/N ratios) hardly influenced the removal efficiencies of sulfide and nitrate. However, the reaction products sulfate and nitrite concentrations in the effluent became higher as the S/N ratios decreased. Under the S/N ratio of 5:5, when the influent sulfide and nitrate concentrations were improved from 100 mg L-1 to 600 mg L-1 and from 87.5 mg L-1 to 306.25 mg L-1, respectively, the sulfide removal efficiencies were all above 99%, but the nitrate removal efficiencies reduced from 95.53% to 55.54%. Sulfide removal effect was better than nitrate. HRT had great effect on the nitrate removal efficiencies, but hardly affected the sulfide removal. When HRT was shortened from 12 h to 2.4 h, the sulfide removal efficiencies were all above 99%, while the nitrate removal efficiencies decreased from 93.14% to 77.04%. The main functional genera included Exiguobacterium, Clostridium, Bacillus, Thiobacillus and Sphingomonas, all of which had the nitrogen and sulfur removal functions.


Asunto(s)
Microbiota , Thiobacillus , Nitratos , Sulfuros , Azufre , Reactores Biológicos/microbiología , Desnitrificación , Nitrógeno
2.
Water Sci Technol ; 89(4): 1047-1062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38423616

RESUMEN

With the background of carbon neutrality, the resource and energy utilization of excess sludge (ES) have become the focus of future research. The pyrolysis of ES can produce biochar and enrich phosphorus (P). In this paper, the existing forms and recovery efficiencies of P in biochar from ES (BCES) were investigated. The results showed that the total phosphorus (TP) content of BCES at 850 °C was 65.1 mg/g, and the inorganic phosphorus (IP) content was 64.2 mg/g. The TP content of BCES was two times heavier than that of ES. The main ingredient of ES was quartz (SiO2), while the main phases of BCES were quartz (SiO2) and aluminum phosphate (AlPO4) at 650 -850 °C, and P mainly existed in the form of AlPO4. When the pyrolysis temperature was 800 and 850 °C, two new minerals appeared: Ca5(PO4)3OH and CaZn2(PO4)2·2H2O. Based on the conditions of a leaching time of 150 min, a H2SO4 concentration of 0.2 mol/L, a stirring rate of 220 rpm and a liquid-solid ratio of 50 mL/g, the leaching efficiency of P in BCES was found to be 100%. The pyrolysis temperature had no effect on leaching efficiencies of P; however, a higher pyrolysis temperature promoted metal leaching content.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Cuarzo , Dióxido de Silicio , Carbón Orgánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA