Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 335, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971825

RESUMEN

BACKGROUND: Structural variations (SVs) are a type of mutations that have not been widely detected in plant genomes and studies in animals have shown their role in the process of domestication. An in-depth study of SVs will help us to further understand the impact of SVs on the phenotype and environmental adaptability during papaya domestication and provide genomic resources for the development of molecular markers. RESULTS: We detected a total of 8083 SVs, including 5260 deletions, 552 tandem duplications and 2271 insertions with deletion being the predominant, indicating the universality of deletion in the evolution of papaya genome. The distribution of these SVs is non-random in each chromosome. A total of 1794 genes overlaps with SV, of which 1350 genes are expressed in at least one tissue. The weighted correlation network analysis (WGCNA) of these expressed genes reveals co-expression relationship between SVs-genes and different tissues, and functional enrichment analysis shows their role in biological growth and environmental responses. We also identified some domesticated SVs genes related to environmental adaptability, sexual reproduction, and important agronomic traits during the domestication of papaya. Analysis of artificially selected copy number variant genes (CNV-genes) also revealed genes associated with plant growth and environmental stress. CONCLUSIONS: SVs played an indispensable role in the process of papaya domestication, especially in the reproduction traits of hermaphrodite plants. The detection of genome-wide SVs and CNV-genes between cultivated gynodioecious populations and wild dioecious populations provides a reference for further understanding of the evolution process from male to hermaphrodite in papaya.


Asunto(s)
Carica , Animales , Carica/genética , Genoma de Planta , Variación Estructural del Genoma , Genómica , Masculino , Fenotipo
2.
BMC Genomics ; 21(1): 426, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580700

RESUMEN

BACKGROUND: Mitochondrial genomic sequences are known to be variable. Comparative analyses of mitochondrial genomes can reveal the nature and extent of their variation. RESULTS: Draft mitochondrial genomes of 16 Tremella fuciformis isolates (TF01-TF16) were assembled from Illumina and PacBio sequencing data. Mitochondrial DNA contigs were extracted and assembled into complete circular molecules, ranging from 35,104 bp to 49,044 bp in size. All mtDNAs contained the same set of 41 conserved genes with identical gene order. Comparative analyses revealed that introns and intergenic regions were variable, whereas genic regions (including coding sequences, tRNA, and rRNA genes) were conserved. Among 24 introns detected, 11 were in protein-coding genes, 3 in tRNA genes, and the other 10 in rRNA genes. In addition, two mobile fragments were found in intergenic regions. Interestingly, six introns containing N-terminal duplication of the host genes were found in five conserved protein-coding gene sequences. Comparison of genes with and without these introns gave rise to the following proposed model: gene fragment exchange with other species can occur via gain or loss of introns with N-terminal duplication of the host genes. CONCLUSIONS: Our findings suggest a novel mechanism of fungal mitochondrial gene evolution: partial foreign gene replacement though intron mobility.


Asunto(s)
Basidiomycota/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Análisis de Secuencia de ADN/métodos , Evolución Molecular , Proteínas Fúngicas/genética , Orden Génico , Variación Genética , Tamaño del Genoma , Secuencias Repetitivas Esparcidas , Intrones , Filogenia
3.
Nat Genet ; 50(12): 1754, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30425353

RESUMEN

In the version of this article originally published, the accession codes listed in the data availability section were incorrect and the section was incomplete. The text for this section should have read "The genome assembly and gene annotation have been deposited in the NCBI database under accession number QVOL00000000, BioProject number PRJNA483885 and BioSample number SAMN09753102. The data can also be downloaded from the following link: http://www.life.illinois.edu/ming/downloads/Spontaneum_genome/ ." The errors have been corrected in the HTML and PDF versions of the article.

4.
Nat Genet ; 50(11): 1565-1573, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30297971

RESUMEN

Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers new knowledge and resources to accelerate sugarcane improvement.


Asunto(s)
Genoma de Planta/genética , Poliploidía , Saccharum/genética , Alelos , Quimera/genética , Duplicación Cromosómica , Cromosomas de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Selección Genética , Sorghum/genética , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...