Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1325434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742201

RESUMEN

Background: Diabetic foot complications impose a significant strain on healthcare systems worldwide, acting as a principal cause of morbidity and mortality in individuals with diabetes mellitus. While traditional methods in diagnosing and treating these conditions have faced limitations, the emergence of Machine Learning (ML) technologies heralds a new era, offering the promise of revolutionizing diabetic foot care through enhanced precision and tailored treatment strategies. Objective: This review aims to explore the transformative impact of ML on managing diabetic foot complications, highlighting its potential to advance diagnostic accuracy and therapeutic approaches by leveraging developments in medical imaging, biomarker detection, and clinical biomechanics. Methods: A meticulous literature search was executed across PubMed, Scopus, and Google Scholar databases to identify pertinent articles published up to March 2024. The search strategy was carefully crafted, employing a combination of keywords such as "Machine Learning," "Diabetic Foot," "Diabetic Foot Ulcers," "Diabetic Foot Care," "Artificial Intelligence," and "Predictive Modeling." This review offers an in-depth analysis of the foundational principles and algorithms that constitute ML, placing a special emphasis on their relevance to the medical sciences, particularly within the specialized domain of diabetic foot pathology. Through the incorporation of illustrative case studies and schematic diagrams, the review endeavors to elucidate the intricate computational methodologies involved. Results: ML has proven to be invaluable in deriving critical insights from complex datasets, enhancing both the diagnostic precision and therapeutic planning for diabetic foot management. This review highlights the efficacy of ML in clinical decision-making, underscored by comparative analyses of ML algorithms in prognostic assessments and diagnostic applications within diabetic foot care. Conclusion: The review culminates in a prospective assessment of the trajectory of ML applications in the realm of diabetic foot care. We believe that despite challenges such as computational limitations and ethical considerations, ML remains at the forefront of revolutionizing treatment paradigms for the management of diabetic foot complications that are globally applicable and precision-oriented. This technological evolution heralds unprecedented possibilities for treatment and opportunities for enhancing patient care.


Asunto(s)
Pie Diabético , Aprendizaje Automático , Pie Diabético/terapia , Humanos
2.
Front Immunol ; 15: 1381227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638434

RESUMEN

Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo
3.
J Neurogastroenterol Motil ; 30(2): 143-155, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38576367

RESUMEN

Diabetic gastroparesis (DGP) is a common complication of diabetes mellitus, marked by gastrointestinal motility disorder, a delayed gastric emptying present in the absence of mechanical obstruction. Clinical manifestations include postprandial fullness and epigastric discomfort, bloating, nausea, and vomiting. DGP may significantly affect the quality of life and productivity of patients. Research on the relationship between gastrointestinal dynamics and DGP has received much attention because of the increasing prevalence of DGP. Gastrointestinal motility disorders are closely related to a variety of factors including the absence and destruction of interstitial cells of Cajal, abnormalities in the neuro-endocrine system and hormone levels. Therefore, this study will review recent literature on the mechanisms of DGP and gastrointestinal motility disorders as well as the development of prokinetic treatment of gastrointestinal motility disorders in order to give future research directions and identify treatment strategies for DGP.

4.
Int J Biochem Cell Biol ; 170: 106569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556159

RESUMEN

Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.


Asunto(s)
Diabetes Mellitus , Enfermedades Vasculares , Humanos , Células Endoteliales/metabolismo , Diabetes Mellitus/metabolismo , Enfermedades Vasculares/metabolismo , Mitocondrias , Endotelio Vascular/metabolismo
5.
Eur J Med Res ; 29(1): 152, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438934

RESUMEN

Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Prevención Secundaria
6.
Biomed Pharmacother ; 173: 116292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394848

RESUMEN

Single-cell sequencing is a novel and rapidly advancing high-throughput technique that can be used to investigating genomics, transcriptomics, and epigenetics at a single-cell level. Currently, single-cell sequencing can not only be used to draw the pancreatic islet cells map and uncover the characteristics of cellular heterogeneity in type 2 diabetes, but can also be used to label and purify functional beta cells in pancreatic stem cells, improving stem cells and islet organoids therapies. In addition, this technology helps to analyze islet cell dedifferentiation and can be applied to the treatment of type 2 diabetes. In this review, we summarize the development and process of single-cell sequencing, describe the potential applications of single-cell sequencing in the field of type 2 diabetes, and discuss the prospects and limitations of single-cell sequencing to provide a new direction for exploring the pathogenesis of type 2 diabetes and finding therapeutic targets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Perfilación de la Expresión Génica
7.
Anal Bioanal Chem ; 416(10): 2465-2478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383664

RESUMEN

Carbapenem-resistant Enterobacteriaceae (CRE) is a major pathogen that poses a serious threat to human health. Unfortunately, currently, there are no effective measures to curb its rapid development. To address this, an in-depth study on the surface-enhanced Raman spectroscopy (SERS) of 22 strains of 7 categories of CRE using a gold silver composite SERS substrate was conducted. The residual networks with an attention mechanism to classify the SERS spectrum from three perspectives (pathogenic bacteria type, enzyme-producing subtype, and sensitive antibiotic type) were performed. The results show that the SERS spectrum measured by the composite SERS substrate was repeatable and consistent. The SERS spectrum of CRE showed varying degrees of species differences, and the strain difference in the SERS spectrum of CRE was closely related to the type of enzyme-producing subtype. The introduced attention mechanism improved the classification accuracy of the residual network (ResNet) model. The accuracy of CRE classification for different strains and enzyme-producing subtypes reached 94.0% and 96.13%, respectively. The accuracy of CRE classification by pathogen sensitive antibiotic combination reached 93.9%. This study is significant for guiding antibiotic use in CRE infection, as the sensitive antibiotic used in treatment can be predicted directly by measuring CRE spectra. Our study demonstrates the potential of combining SERS with deep learning algorithms to identify CRE without culture labels and classify its sensitive antibiotics. This approach provides a new idea for rapid and accurate clinical detection of CRE and has important significance for alleviating the rapid development of resistance to CRE.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Aprendizaje Profundo , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Plata/química , Espectrometría Raman/métodos
8.
J Inflamm Res ; 17: 223-249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229693

RESUMEN

Objective: Immunogenic cell death (ICD) is part of the immune system's response to coronary artery disease (CAD). In this study, we bioinformatically evaluated the diagnostic and therapeutic utility of immunogenic cell death-related genes (IRGs) and their relationship with immune infiltration features in CAD. Methods: We acquired the CAD-related datasets GSE12288, GSE71226, and GSE120521 from the Gene Expression Omnibus (GEO) database and the IRGs from the GeneCards database. After identifying the immune cell death-related differentially expressed genes (IRDEGs), we developed a risk model and detected immune subtypes in CAD. IRDEGs were identified using least absolute shrinkage and selection operator (LASSO) analysis. Using a nomogram, we confirmed that both the LASSO model and ICD signature genes had good diagnostic performance. Results: There was a high degree of coincidence and immune representativeness between two CAD groups based on characteristic genes and hub genes. Hub genes were associated with the interaction of neuroactive ligands with receptors and cell adhesion receptors. The two groups differed in terms of adipogenesis, allograft rejection, and apoptosis, as well as the ICD signature and hub gene expression levels. The two CAD-ICD subtypes differed in terms of immune infiltration. Conclusion: Quantitative real-time PCR (qRT-PCR) correlated CAD with the expression of OAS3, ITGAV, and PIBF1. The ICD signature genes are candidate biomarkers and reference standards for immune grouping in CAD and can be beneficial in precise immune-targeted therapy.

9.
Heliyon ; 9(8): e17931, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37701408

RESUMEN

[This retracts the article DOI: 10.1016/j.heliyon.2022.e11005.].

10.
Am J Chin Med ; 51(7): 1711-1749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646143

RESUMEN

Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.


Asunto(s)
Diabetes Mellitus , Morus , Humanos , Morus/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hojas de la Planta/química
11.
Biology (Basel) ; 12(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237464

RESUMEN

A nine-week feeding trial was conducted to investigate changes in the intestinal microbiota of turbot in response to alternate feeding between terrestrially sourced oil (TSO)- and fish oil (FO)-based diets. The following three feeding strategies were designed: (1) continuous feeding with the FO-based diet (FO group); (2) weekly alternate feeding between soybean oil (SO)- and FO-based diets (SO/FO group); and (3) weekly alternate feeding between beef tallow (BT)- and FO-based diets (BT/FO group). An intestinal bacterial community analysis showed that alternate feeding reshaped the intestinal microbial composition. Higher species richness and diversity of the intestinal microbiota were observed in the alternate-feeding groups. A PCoA analysis showed that the samples clustered separately according to the feeding strategy, and among the three groups, the SO/FO group clustered relatively closer to the BT/FO group. The alternate feeding significantly decreased the abundance of Mycoplasma and selectively enriched specific microorganisms, including short-chain fatty acid (SCFA)-producing bacteria, digestive bacteria (Corynebacterium and Sphingomonas), and several potential pathogens (Desulfovibrio and Mycobacterium). Alternate feeding may maintain the intestinal microbiota balance by improving the connectivity of the ecological network and increasing the competitive interactions within the ecological network. The alternate feeding significantly upregulated the KEGG pathways of fatty acid and lipid metabolism, glycan biosynthesis, and amino acid metabolism in the intestinal microbiota. Meanwhile, the upregulation of the KEGG pathway of lipopolysaccharide biosynthesis indicates a potential risk for intestinal health. In conclusion, short-term alternate feeding between dietary lipid sources reshapes the intestinal microecology of the juvenile turbot, possibly resulting in both positive and negative effects.

12.
Front Endocrinol (Lausanne) ; 14: 1134297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223050

RESUMEN

Aims/hypothesis: Through a comprehensive analysis of the clinical randomized controlled trials of traditional Chinese medicine (TCM) combined with conventional western medicine (CWM) in treating type 2 diabetes(T2DM) in the past ten years, the clinical efficacy and safety of different TCMs combined with CWM were explored. This study aimed to provide specific suggestions for clinical guidance on treating T2DM. Methods: A literature search was conducted in CNKI, WanFang, VIP, CBM, PubMed, Embase, and Web of Science. The search time was limited from 2010 to the present time. The literature type was a controlled clinical trial study of TCM combined with CWM intervention in treating T2DM. The outcome indices of the efficacy evaluation included fasting blood glucose (FBG), 2-hour postprandial blood glucose (2hPG), glycosylated hemoglobin (HbA1c), adverse reactions, and clinical efficacy. Stata 15 and RevMan 5.4 software were used to conduct a network meta-analysis and a traditional meta-analysis. Results: The results showed that shenqi jiangtang granule combined with sulfonylurea, shenqi jiangtang granules combined with metformin and jinlida granules combined with insulin had significant effects on reductions in FBG, 2hPG and clinical efficacy compared with western medicines alone, which included fasting blood glucose [MD=-2.17, 95%CI=(-2.50, -1.85)], blood sugar at 2 hours after a meal [MD=-1.94, 95%CI=(-2.23, -1.65)], and clinical curative effect [OR= 1.73, 95%CI=(0.59, 2.87)]. Conclusions: TCM combined with CWM has a very significant effect on treating T2DM compared with CWM alone. According to the network meta-analysis, the best intervention measures of different TCMs for different outcome indicators were obtained. Systematic review registration: identifier 42022350372.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Medicina Tradicional China , Metaanálisis en Red , Glucemia , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
Aquac Nutr ; 2023: 8128141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089257

RESUMEN

A 12-week feeding trial was conducted to investigate the effect of the same fishmeal protein level replaced by black soldier fly larvae (Hermetia illucens) meal (BSFL) with different lipid contents on the growth performance and intestinal health of juvenile turbot (Scophthalmus maximus L.) (initial body weight 12.64 g). Three isonitrogenous and isolipidic diets were formulated: fish meal-based diet (FM), diets DF and FF, in which 14% fish meal protein of the FM diet was replaced by defatted and full-fat BSFL, respectively. There were no significant differences in growth performance, intestinal morphology, and mucosal barrier function between the DF and the FM group. However, diet FF markedly reduced the growth performance, intestinal perimeter ratio, and the gene expression of anti-inflammatory cytokine TGF-ß (P < 0.05). Compared to group FF, the communities of intestinal microbiota in group DF were more similar to group FM. Moreover, diet DF decreased the abundance of some potential pathogenic bacteria and enriched the potential probiotics, such as Bacillus. Diet FF obviously altered the composition of intestinal microbiota and increased the abundance of some potential pathogenic bacteria. These results suggested that the application of defatted BSFL showed more positive effects on fish growth and intestinal health than the full-fat BSFL, and the intestinal microbiota was closely involved in these effects.

14.
World J Diabetes ; 14(3): 313-342, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37035221

RESUMEN

BACKGROUND: Diabetic gastroparesis (DGP) is a prevalent complication of diabetes that impairs people's quality of life and places a significant financial burden on them. The gastrointestinal symptoms of DGP patients can be improved by several Traditional Chinese Medicine (TCM) decoctions that have been shown to be effective in treating the disease. There are still many unanswered questions regarding the identification of appropriate therapeutic agents for the treatment of DGP in clinical practice. AIM: To analyze the efficacy of several TCM decoctions in the treatment of DGP using Bayesian network meta-analysis for reference. METHODS: PubMed, EMBASE, Cochrane Library, Web of Science, China National Kno-wledge Infrastructure, The China Biology Medicine DVD, Wanfang, and CQVIP were searched from inception to September 17, 2022, to collect randomized controlled trials (RCTs) about TCM decoctions for DGP. Clinical effects and symptom scores were the primary outcomes. Additionally, we assessed motilin (MOT), somatostatin (SS), gastrin (GAS), gastric emptying rate, gastric emptying time, and adverse drug events as secondary outcomes. RESULTS: A total of 67 eligible RCTs involving 4790 DGP patients and 7 TCM decoctions were included. The results of network meta-analysis (NMA) and surface under the cumulative ranking curve showed that with western medicine (WM) as a common control, the Banxia Xiexin Decoction (BXXD) + WM was most effective in clinical effects and enhancing early satiety scores; the Simo decoction (SMD) + WM was most effective in improving nausea and vomiting scores and anorexia scores, bloating scores; the Chaishao Liujunzi Decoction (CSLJD) was most effective in MOT, the Zhishi Xiaopi Decoction (ZSXPD) was most effective in SS and upgrading emptying rate; the Jianpi Xiaozhi Decoction was most effective in GAS; the CSLJD + WM was most effective in improving gastric emptying time. CONCLUSION: These NMA results suggest that the BXXD + WM and SMD + WM may be one of the potential optimal treatments. Due to various limitations, further large-sample, double-blind, multi-center randomized RCTs are needed.

15.
Platelets ; 34(1): 2200860, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37070954

RESUMEN

Clopidogrel combined with aspirin is widely used in coronary artery disease (CAD) patients, while some patients exhibit high platelet activity when receiving the combined treatment. Current environmental and genetic factors could only explain part of the variability in clopidogrel efficacy. Human platelets harbor abundant miRNAs which might affect clopidogrel efficacy by regulating the expression of key proteins in the clopidogrel antiplatelet signaling pathway. This study aimed to investigate the association between platelet miRNA levels and clopidogrel efficacy. Here we recruited 508 CAD patients who underwent clopidogrel antiplatelet therapy and determined the platelet reactivity index (PRI) to evaluate antiplatelet reactivity responses to clopidogrel. Subsequently, 22 patients with extreme clopidogrel response were selected for platelet small RNA sequencing. Another 41 CAD patients taking clopidogrel were collected to verify the differentially expressed candidate miRNAs. We found the metabolic types of the CYP2C19 enzyme (based on CYP2C19 * 2 and * 3 polymorphisms) could significantly affect the PRI of CAD patients with or without percutaneous coronary intervention (PCI) in Chinese. A total of 43 miRNAs were differentially expressed in the platelets from the 22 extreme clopidogrel response samples, and 109 miRNAs were differentially expressed in the 13 CYP2C19 extensive metabolizers with extreme clopidogrel response. Platelet miR-199a-5p levels were correlated negatively with PRI after clopidogrel therapy. Studies in cultured cells revealed that miR-199a-5p inhibited the expression of VASP, a key effector protein downstream of the P2Y12 receptor. In conclusion, we found the expression of VASP could be inhibited by miR-199a-5p, and decreased platelet miR-199a-5p was associated with high on-clopidogrel platelet reactivity in CAD patients.


What is the context?● Clopidogrel combined with aspirin is widely used in coronary artery disease (CAD) patients, while some patients exhibit high platelet activity when receiving the combined treatment.● Current environmental and genetic factors could only explain part of the variability in clopidogrel efficacy.● Human platelets harbor abundant miRNAs which might affect clopidogrel efficacy by regulating the expression of key proteins in the clopidogrel antiplatelet signaling pathway.What is new?● We found that decreased platelet miR-199a-5p level was associated with high on-clopidogrel platelet reactivity.● Overexpression of miR-199a-5p significantly down-regulated the expression of VASP protein in cultured cells.What is the impact?● The current study provided new insights into the exploration of interindividual variability in clopidogrel response from the perspective of miR-199a-5p and VASP interaction.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Intervención Coronaria Percutánea , Humanos , Clopidogrel/farmacología , Clopidogrel/uso terapéutico , Plaquetas/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ticlopidina/farmacología , Ticlopidina/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo
16.
Cell Death Dis ; 14(3): 186, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882414

RESUMEN

The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas ß cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ferroptosis , Resistencia a la Insulina , Muerte Celular Regulada , Humanos , Hierro
17.
Microorganisms ; 11(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677500

RESUMEN

The fish oil finishing (FOF) strategy, that is, re-feeding fish with fish oil (FO)-based diet after a certain period of feeding with alternative lipid source-based diets. On tiger puffer, the present study investigated the response of intestinal microbiota to FOF. Fish were fed four diets based on FO, soybean oil, palm oil and beef tallow as lipid sources, respectively, firstly for 50 days (growing-out period), and then fed the FO-based diet for 30 more days (FOF period). The results showed that dietary terrestrially sourced oils impaired the intestinal function in the growing-out period. However, the activities of amylase, trypsin and anti-oxidative enzymes (SOD, CAT, T-AOC), as well as gene expression of inflammatory cytokines (IL-1ß, TNF-α, TGF-ß) and tight junction protein (Claudin4, Claudin7, Claudin18, JAM, ZO-1) in the intestine were significantly recovered by FOF. The 16S rDNA sequencing analysis showed that FOF improved the similarity of bacterial community among the groups. The MetaStat analysis confirmed that FOF regulated the abundance of butyric acid-producing bacteria (Lachnospiraceae, Eubacterium, Butyricicoccus, Clostridium and Roseburia) and bacteria related to digestion and absorption (Sphingomonas, Romboutsia and Brevibacillus). In conclusion, FOF can recover the intestine function. The intestinal microbiota probably participated in and played a key role in the recovery process.

18.
Fish Shellfish Immunol ; 132: 108459, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455776

RESUMEN

This study was conducted to assess the effects of dietary copper source and level on hematological parameters, copper accumulation and transport, resistance to low temperature, antioxidant capacity and immune response of white shrimp (Litopenaeus vannamei Boone, 1931). Seven experimental diets with different copper sources and levels were formulated: C, no copper supplementation; S, 30 mg/kg copper in the form of CuSO4·5H2O; SO, 15 mg/kg copper in CuSO4·5H2O + 7.5 mg/kg copper in Cu-proteinate; O1, O2, O3 and O4, 10, 20, 30 and 40 mg/kg copper in the form of Cu-proteinate, respectively. A total of 840 shrimp (5.30 ± 0.04 g) were randomly distributed to 21 tanks (3 tanks/diet, 40 shrimp/tank). An 8-week feeding trial was conducted. The results showed that there was no significant difference in growth performance and whole shrimp chemical compositions among all groups. Compared with inorganic copper, dietary organic copper (O2 and O3) increased total protein, albumin, and glucose content of plasma, while decreased triglyceride and total cholesterol of plasma. Copper concentration in plasma and muscle and gene expression of metallothionein and copper-transporting ATPase 2 like in hepatopancreas were higher in shrimp fed organic copper (SO, O2, O3 and O4). The lowest mortality after low temperature (10 °C) challenge test was observed in the O2 and O3 groups. Organic copper (SO, O2, O3 and O4) significantly enhanced the antioxidant capacity (in terms of higher activities of total superoxide dismutase, copper zinc superoxide dismutase, catalase, glutathione peroxidase and total antioxidant capacity, lower malondialdehyde concentration of plasma, and up-regulated gene expression of superoxide dismutase, copper zinc superoxide dismutase, catalase and glutathione peroxidase of hepatopancreas). Organic copper (SO, O2, O3 and O4) enhanced the immune response (in terms of higher number of total hemocytes, higher activities of acid phosphatase, alkaline phosphatase, phenoloxidase, hemocyanin and lysozyme in plasma, and higher gene expressions of alkaline phosphatase, lysozyme and hemocyanin in hepatopancreas). Inorganic copper (Diet S) also had positive effects on white shrimp compared with the C diet, but the SO, O2, O3 and O4 diets resulted in better results, among which the O2 diet appeared to be the best one. In conclusion, organic copper was more beneficial to shrimp health than copper sulfate.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Fosfatasa Alcalina , Alimentación Animal/análisis , Antioxidantes/metabolismo , Catalasa , Cobre/metabolismo , Dieta/veterinaria , Glutatión Peroxidasa/metabolismo , Hemocianinas/farmacología , Inmunidad Innata , Muramidasa/farmacología , Superóxido Dismutasa/metabolismo , Temperatura , Zinc/farmacología
19.
Biomolecules ; 12(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36551213

RESUMEN

The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, ß-cell differentiation, and the maintenance of mature ß-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes ß-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.


Asunto(s)
Diabetes Mellitus , Proteínas de Homeodominio , Humanos , Proteínas de Homeodominio/genética , Transactivadores/genética , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Páncreas , Insulina/genética , Duodeno
20.
BMC Cardiovasc Disord ; 22(1): 575, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36581799

RESUMEN

BACKGROUNDS: Remarkable interindividual variability in clopidogrel response is observed, genetic polymorphisms in P2RY12 and its signal pathway is supposed to affect clopidogrel response in CHD patients. METHODS: 539 CHD patients treated with clopidogrel were recruited. The platelet reaction index (PRI) indicated by VASP-P level were detected in 12-24 h after clopidogrel loading dose or within 5-7 days after initiation of maintain dose clopidogrel. A total of 13 SNPs in relevant genes were genotyped in sample A (239 CHD patients). The SNPs which have significant differences in PRI will be validated in another sample (sample B, 300 CHD patients). RESULTS: CYP2C19*2 increased the risk of clopidogrel resistance significantly. When CYP2C19*2 and CYP2C19*3 were considered, CYP2C19 loss of function (LOF) alleles were associated with more obviously increased the risk of clopidogrel resistance; P2RY12 rs6809699C > A polymorphism was also associated with increased risk of clopidogrel resistance (AA vs CC: P = 0.0398). This difference still existed after stratification by CYP2C19 genotypes. It was also validated in sample B. The association was also still significant even in the case of stratification by CYP2C19 genotypes in all patients (sample A + B). CONCLUSION: Our data suggest that P2RY12 rs6809699 is associated with clopidogrel resistance in CHD patients. Meanwhile, the rs6809699 AA genotype can increase on-treatment platelet activity independent of CYP2C19 LOF polymorphisms.


Asunto(s)
Clopidogrel , Enfermedad Coronaria , Inhibidores de Agregación Plaquetaria , Receptores Purinérgicos P2Y12 , Humanos , Clopidogrel/farmacología , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/genética , Citocromo P-450 CYP2C19/genética , Genotipo , Inhibidores de Agregación Plaquetaria/farmacología , Polimorfismo de Nucleótido Simple , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...