Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mitochondrial DNA B Resour ; 8(10): 1063-1066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810610

RESUMEN

The complete mitochondrial genome of Polythlipta liquidalis Leech, 1889 was sequenced and annotated in this study, which was the first reported complete mitogenome of the genus Polythlipta. The mitogenome of P. liquidalis is 15,305 bp in length and was predicted to encode 37 typical mitochondrial genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and one major non-coding A-T rich region. The maximum likelihood phylogenetic analysis based on the 13 PCGs was constructed, including P. liquidalis and 15 related Spilomelinae species, using Ostrinia furnacalis as the outgroup. The result showed that P. liquidalis is grouped with Sinomphisa plagialis. These data will serve as a molecular resource for species identification of P. liquidalis and become a valuable resource for a range of genetic, functional, evolutionary and comparative genomic studies on members of Spilomelinae.

2.
Phys Rev Lett ; 126(2): 025701, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512235

RESUMEN

Elastic moduli (C_{ij}) of single-crystal stishovite and post-stishovite are determined using Brillouin light scattering, impulsive stimulated light scattering, and x-ray diffraction up to 70 GPa. The C_{12} of stishovite converges with the C_{11} at ∼55 GPa, where the transverse wave V_{S1} propagating along [110] also vanishes. Landau modeling of the C_{ij}, B_{1g} optic mode, and lattice parameters reveals a pseudoproper type ferroelastic post-stishovite transition. The transition would cause peculiar anomalies in V_{S} and Poisson's ratio in silica-bearing subducting slabs in the mid-lower mantle.

3.
ACS Macro Lett ; 10(11): 1346-1352, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-35549021

RESUMEN

Stimuli-responsive polymers with changeable fluorescent properties have numerous applications in sensing, bioimaging, and detection. Here we describe the facile synthesis of a pH-responsive amphiphilic asymmetric diblock copolymer of acrylic acid and butyl acrylate that incorporates a polarity-sensitive fluorophore. The asymmetric structure enhances the stimuli-responsive behavior: as the environmental pH decreases, the fluorescent intensity of the asymmetric diblock copolymer gradually increases, whereas its symmetric block counterpart shows limited and stepwise change. Besides, this remarkable difference was demonstrated to be concentration-independent, as similar emission behavior was found for both polymers at lower concentrations. These results indicate that the fluorescence properties of the copolymer can be adjusted by rationally designing the copolymer structure. This work provides a novel and general strategy for the design and synthesis of polymeric materials with encapsulated structures showing stimuli-responsive fluorescent properties to be applied as fluorescent probes with a smoothly varying response curve rather than the simple on-off switch that is typical of block copolymer systems.


Asunto(s)
Micelas , Polímeros , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno
4.
Adv Mater ; 32(45): e2001942, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33015896

RESUMEN

The recent observation of unusually high thermal conductivity exceeding 1000 W m-1 K-1 in single-crystal boron arsenide (BAs) has led to interest in the potential application of this semiconductor for thermal management. Although both the electron/hole high mobilities have been calculated for BAs, there is a lack of experimental investigation of its electronic properties. Here, a photoluminescence (PL) measurement of single-crystal BAs at different temperatures and pressures is reported. The measurements reveal an indirect bandgap and two donor-acceptor pair (DAP) recombination transitions. Based on first-principles calculations and time-of-flight secondary-ion mass spectrometry results, the two DAP transitions are confirmed to originate from Si and C impurities occupying shallow energy levels in the bandgap. High-pressure PL spectra show that the donor level with respect to the conduction band minimum shrinks with increasing pressure, which affects the release of free carriers from defect states. These findings suggest the possibility of strain engineering of the transport properties of BAs for application in electronic devices.

5.
Adv Mater ; 32(22): e1908311, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32329148

RESUMEN

Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2 . Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump-probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2 , mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(9): 2742-8, 2016 Sep.
Artículo en Chino | MEDLINE | ID: mdl-30084588

RESUMEN

The interior of the Earth is a high temperature and high pressure environment. High temperatures cause important changes in the physical and chemical properties of minerals. An increase in temperature leads to significant changes in the molecular and lattice vibrations, elasticity, and seismic velocity of minerals. The high temperature vibrational spectroscopy (infrared and Raman) used to study these changes can provide highly significant understanding of the Earth's interior. During high temperature spectroscopy, the heating device that is used to heat the sample can work at a very high temperature (e.g., 1 500 ℃) because it has a cooling device surrounding it that is used to prevent the temperature of its environments from getting too high. However, radiation from its heating elements is intense and this will shine on and heat the objective lens of the focusing system for the spectroscopic light source, and this would result in damage to the lens. Thus, to avoid damage to the objective lens, an upper limit is placed on the heater temperature. The significance of this work is that it presents a method to exceed the present instrument's temperature limit so that we can perform in situ spectroscopy on samples at higher temperatures. This work extended the temperature limit for the sample to a higher temperature by using an air blower around the objective lens to create a gas flow around it. The gas flow serves to remove heat from the objective lens by forced convection and its turbulent flow also served to increase the rate of heat transport from the lens to the moving gas stream, which together prevented overheating of the objective lens. Our results have shown that although this device is simple, it was highly effective: for a sample temperature of 1 000 ℃, the objective lens temperature was reduced from ~235 to ~68 ℃. Using this device, we performed in situ high temperature Raman spectroscopy of forsterite up to a sample temperature of 1 300 ℃. The results agreed well with previous studies and demonstrated that with our simple air blower device, we can perform in situ high temperature spectroscopy up to 1 300 ℃ without damaging the objective lens and without expensive components like a high temperature composite objective lens or a long focus objective lens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...