Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Lancet Reg Health West Pac ; 46: 101077, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721064

RESUMEN

Background: Health-related quality of life (HRQoL), along with overall survival (OS), is a critical study endpoint for measuring the clinical benefits of cancer drugs. Previous studies have examined the OS benefit of new cancer drugs approved in China. However, their HRQoL benefits have not been systematically evaluated. We aimed to characterise the measurement and improvement of HRQoL associated with cancer drugs approved in China. Methods: This mixed-methods study comprises of a literature review and a cross-sectional study, including all antineoplastic agents approved in China between January 1, 2005 and December 31, 2020. A systematic search was conducted on December 31, 2023 to extract HRQoL information of identified drugs. We extracted information on the characteristics of HRQoL assessment and statistically significant HRQoL gains compared with the control treatment. Findings: A total of 64 novel cancer drugs, corresponding to 115 cancer indications, supported by randomised clinical trials were approved in China between 2005 and 2020. Among the indications, 78 (67.8%) used HRQoL as an endpoint in the pivotal trial. By December 31, 2023, after a median follow-up of 5.3 (range, 3.0-18.8) years from approval, HRQoL information was available for more than half of the indications (75, 65.2%). Thirty-three indications (28.7%) reported statistically significant improvement in HRQoL, with 22 (19.1%) also having documented OS benefit. Approximately one-third of the indications (39, 33.9%) showed no difference in HRQoL, with 21 (18.3%) having documented OS gains. Three indications (2.6%) reported worsening HRQoL. The most commonly used HRQoL measurements were individual disease-specific instruments (62 of 75, 82.7%) while the most frequently employed analysis metric was the mean change scores from baseline (56 of 75, 74.7%). Interpretation: Fewer than one-third of cancer indications approved in China had shown HRQoL improvements. There was considerable heterogeneity in the analysis and reporting of HRQoL benefits associated with new cancer drugs approved in China. These findings emphasise the important role of HRQoL evaluation and analysis in clinical research and the necessity of improving the standardization of HRQoL assessment. Funding: National Natural Science Foundation of China (72274004).

2.
Opt Lett ; 49(9): 2521-2524, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691759

RESUMEN

Quantum key distribution allows secret key generation with information theoretical security. It can be realized with photonic integrated circuits to benefit the tiny footprints and the large-scale manufacturing capacity. Continuous-variable quantum key distribution is suitable for chip-based integration due to its compatibility with mature optical communication devices. However, the quantum signal power control compatible with the mature photonic integration process faces difficulties on stability, which limits the system performance and causes the overestimation of a secret key rate that opens practical security loopholes. Here, a highly stable chip-based quantum signal power control scheme based on a biased Mach-Zehnder interferometer structure is proposed, theoretically analyzed, and experimentally implemented with standard silicon photonic techniques. Simulations and experimental results show that the proposed scheme significantly improves the system stability, where the standard deviation of the secret key rate is suppressed by an order of magnitude compared with the system using traditional designs, showing a promising and practicable way to realize a highly stable continuous-variable quantum key distribution system on chip.

3.
Biomimetics (Basel) ; 9(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667237

RESUMEN

In this paper, we proposed a miniature quadrupedal piezoelectric robot with a mass of 1.8 g and a body length of 4.6 cm. The robot adopts a novel spatial parallel mechanism as its transmission. Each leg of the robot has two degrees of freedom (DOFs): swing and lift. The trajectory necessary for walking is achieved by the appropriate phasing of these two DOFs. A new manufacturing method for piezoelectric actuators was developed. During the stacking process, discrete patterned PZT pieces are used to avoid dielectric failure caused by laser cutting. Copper-clad FR-4 is used as the solder pad instead of copper foil, making the connection between the pad and the actuator more reliable. The lift powertrain of the robot was modeled and the link length of the powertrain was optimized based on the model. The maximum output force of each leg can reach 26 mN under optimized design parameters, which is 1.38 times the required force for successful walking. The frequency response of the powertrain was measured and fitted to the second-order system, which enabled increased leg amplitudes near the powertrain resonance of approximately 70 Hz with adjusted drive signals. The maximum speed of the robot without load reached 48.66 cm/s (10.58 body lengths per second) and the payload capacity can reach 5.5 g (3.05 times its mass) near the powertrain resonance.

4.
Oncoimmunology ; 13(1): 2340154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601319

RESUMEN

Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Factor 2 Relacionado con NF-E2/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Oxidación-Reducción , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Inmunoterapia , Mutación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Linfocitos T , Linfocitos T CD8-positivos , Microambiente Tumoral/genética , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción
5.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566102

RESUMEN

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapéutico
6.
Lancet Reg Health West Pac ; 45: 101055, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38590780

RESUMEN

Background: Perceived delays in cancer drug approvals have been a major concern for policymakers in China. Policies have been implemented to accelerate the launch of new cancer drugs and indications. This study aimed to assess similarities and differences between China and the United States in the approvals, timing, and clinical benefit evidence of cancer drug indications between 2001 and 2020. Methods: This study retrospectively identified all cancer drugs and indications approved in both China and the United States from January 1st, 2001 to December 31, 2020, and described differences in approval times as well as in submission and review times. Information on the availability of overall survival benefit evidence by December 31, 2020, was collected. Univariate and multiple logistic regression analyses were used to assess whether evidence of benefit and other factors affected the propensity and timing of approvals of cancer drug indications in China. Findings: Between 2001 and 2020, 229 indications corresponding to 145 cancer drugs approved in the United States were identified. Of those, 80 indications (34.9%) were also approved in China by the end of 2020. Cancer drug indications were approved in China at a median of 1273.5 days after approval in the United States. The median submission and review time differences for cancer drug indications in China were 1198.0 days and 180.0 days respectively. Submission time differences accounted for most of the approval time differences (p < 0.001). Indications supported by overall survival benefit evidence had shorter median review time differences (145.0 days) than those without such evidence (235.0 days, p = 0.008). Indications with overall survival benefit evidence were 3.94 times more likely to be approved in China compared to those without such evidence (p = 0.001), controlling for approval year, cancer type, and the prevalence of cancer by site. Interpretation: FDA-approved cancer drug indications demonstrating a survival benefit were more likely to receive approvals in China with shorter regulatory review times compared to indications without such evidence. Given that manufacturer submission times were the main driver of cancer drug approval times in China, factors influencing submission timing should be explored. Funding: No funding.

7.
World J Urol ; 42(1): 216, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581575

RESUMEN

BACKGROUND: Previous research has focused on the association between immune cells and the development of benign prostatic hyperplasia (BPH). Nevertheless, the causal relationships in this context remain uncertain. METHODS: This study employed a comprehensive and systematic two-sample Mendelian randomization (MR) analysis to determine the causal relationships between immunophenotypes and BPH. We examined the causal associations between 731 immunophenotypes and the risk of BPH by utilizing publicly available genetic data. Integrated sensitivity analyses were performed to validate the robustness, assess heterogeneity, and examine horizontal pleiotropy in the results. RESULTS: We discovered that 38 immunophenotypes have a causal effect on BPH. Subsequently, four of these immunophenotypes underwent verification using weighted median, weighted mode, and inverse variance weighted (IVW) algorithms, which included CD19 on CD24+ CD27+, CD19 on naive-mature B cell, HLA DR on CD14- CD16+ and HLA DR+ T cell%lymphocyte. Furthermore, BPH exhibited a significant association with three immunophenotypes: CD19 on IgD+ CD38dim (ß = -0.152, 95% CI = 0.746-0.989, P = 0.034), CD19 on IgD+ (ß = -0.167, 95% CI = 0.737-0.973, P = 0.019), and CD19 on naive-mature B cell (ß = -0.166, 95% CI = 0.737-0.972, P = 0.018). CONCLUSIONS: Our study provides valuable insights for future clinical investigations by establishing a significant association between immune cells and BPH.


Asunto(s)
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/genética , Análisis de la Aleatorización Mendeliana , Proteínas Adaptadoras Transductoras de Señales , Algoritmos , Antígenos HLA-DR
8.
EClinicalMedicine ; 71: 102561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38549585

RESUMEN

Background: Aggressive care near patients' end-of-life (EOL) entails limited therapeutic values, high costs, and compromised quality of life (QoL). In this study, we aimed to estimate the global prevalence of aggressive care in patients with cancer and explore potential subgroup differences. Methods: We searched PubMed, Embase, and the Cochrane Library from database inception to Feb 16, 2024. Eligible studies reported the prevalence of aggressive EOL care using at least one quantifiable measure. Random-effects models were used to derive the pooled prevalence and subgroup analyses were performed to investigate differences in the prevalence of aggressive care across regions, the country's level of economic development, tumor types, ages, and sample sizes. This review is registered with PROSPERO, number CRD42023467839. Findings: A total of 129 studies were included in this systematic review, of which 118 (91.5%) were from high-income countries. Studies were mostly conducted in the Americas (60, 46.5%), Europe (34, 26.4%), and Western Pacific (31, 24.0%). Measures of aggressive care were inconsistent across studies, with the most commonly used measure being the use of chemotherapy in the last 14 days of life (DOLs) (n = 87, 67.4%) and intensive care unit (ICU) stay in the last 30 DOLs (n = 87, 67.4%). The prevalence of the five claims-based measures of aggressive care, i.e., chemotherapy in the last 14 DOLs, ICU stay in the last 30 DOLs, repeated hospital admission in the last 30 DOLs, repeated emergency room (ER) visit in the last 30 DOLs, and hospice care <3 days before death were 11.6% (95% CI, 9.8%-13.4%), 14.4% (95% CI, 11.8%-17.0%), 17.9% (95% CI, 14.4%-21.4%), 14.8% (95% CI, 12.0%-17.6%), and 14.4% (95% CI, 11.2%-17.6%), respectively. Regional differences were statistically significant in the prevalence of ICU stay and repeated hospital admission in the last 30 DOLs (p < 0.01; p = 0.03). Patients with hematologic malignancies were more likely to receive aggressive care than those with solid tumors, as seen in their higher rates of chemotherapy in the last 14 DOLs (21.7% versus 11.6%; p = 0.03), ICU stay in the last 30 DOLs (25.5% versus 10.8%; p < 0.01), and hospice care <3 days before death (26.7% versus 14.2%; p < 0.01). In addition, the prevalence of chemotherapy in the last 14 DOLs (26.2%; p < 0.01) and repeated hospital admission in the last 30 DOLs (31.4%; p < 0.01) were highest among pediatric patients with cancer. Interpretation: This meta-analysis found that aggressive EOL care was common in patients with cancer, regardless of the definition used, and varied by regions and populations. It is necessary to be aware of the global burden of aggressive care for patients with cancer near their EOL and take prompt action to address it. Funding: National Natural Science Foundation of China (Grant No. 72274004).

9.
mBio ; 15(4): e0019924, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38440980

RESUMEN

Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE: Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.


Asunto(s)
Infecciones por Citomegalovirus , Infección por el Virus Zika , Virus Zika , Recién Nacido , Niño , Humanos , Virus Zika/fisiología , Citomegalovirus/genética , Células Madre , Interferones/metabolismo
10.
Int J Pharm ; 655: 124032, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38521374

RESUMEN

Ferroptosis inhibits tumor growth by iron-dependently accumulating lipid peroxides (LPO) to a lethal extent, which can result from iron overload and glutathione peroxidase 4 (GPX4) inactivation. In this study, we developed biodegradable zwitterionic polymer-cloaked atorvastatin (ATV)-loaded ferric metal-organic frameworks (Fe-MOFs) for cancer treatment. Fe-MOFs served as nanoplatforms to co-deliver ferrous ions and ATV to cancer cells; the zwitterionic polymer membrane extended the circulation time of the nanoparticles and increased their accumulation at tumor sites. In cancer cells, the structure of the Fe-MOFs collapsed in the presence of glutathione (GSH), leading to the depletion of GSH and the release of ATV and Fe2+. The released ATV decreased mevalonate biosynthesis and GSH, resulting in GPX4 attenuation. A large number of reactive oxygen species were generated by the Fe2+-triggered Fenton reaction. This synergistic effect ultimately contributed to a lethal accumulation of LPO, causing cancer cell death. The findings both in vitro and in vivo suggested that this ferroptosis-inducing nanoplatform exhibited enhanced anticancer efficacy and preferable biocompatibility, which could provide a feasible strategy for anticancer therapy.


Asunto(s)
Ferroptosis , Estructuras Metalorgánicas , Neoplasias , Humanos , Polímeros , Atorvastatina , Glutatión , Hierro , Peróxidos Lipídicos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
12.
Ther Adv Med Oncol ; 16: 17588359241229435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333112

RESUMEN

Background: Mesenchymal-epithelial transition (MET) amplification is a crucial oncogenic driver and a resistance mechanism to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) of non-small-cell lung cancer (NSCLC). Fluorescence in situ hybridization (FISH) is the gold standard for MET amplification detection. However, it is inapplicable when tissue samples are unavailable. Objective: This study assessed the performance of plasma droplet digital polymerase chain reaction (ddPCR) in MET amplification detection in NSCLC patients. Design and methods: A total of 87 NSCLC patients were enrolled, and 94 paired tissue and plasma samples were analyzed for the concordance between FISH and plasma ddPCR/tissue next-generation sequencing (NGS) in detecting MET amplification. In addition, the efficacy of patients with MET amplification using different detection methods who were treated with MET-TKIs was evaluated. Results: Plasma ddPCR showed substantial concordance with FISH (74.1% sensitivity, 92.5% specificity, and 87.2% accuracy with a kappa value of 0.68) and outperformed tissue NGS (kappa value of 0.64) in MET amplification detection. Combined plasma ddPCR and tissue NGS showed substantial concordance with FISH (92.3% sensitivity, 89.2% specificity, and an accuracy of 90.1% with a kappa value of 0.77). The efficacy is comparable in these NSCLC patients with MET amplification detected by FISH and plasma ddPCR who were treated with MET-TKIs. Conclusion: Plasma ddPCR is a potentially reliable method for detecting MET amplification in advanced NSCLC patients. Combined plasma ddPCR and tissue NGS might be an alternative or complementary method to MET amplification detection.

13.
J Cell Biol ; 223(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319250

RESUMEN

Endosomes are specialized organelles that function in the secretory and endocytic protein sorting pathways. Endocytosed cell surface receptors and transporters destined for lysosomal degradation are sorted into intraluminal vesicles (ILVs) at endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. The endosomes (multivesicular bodies, MVBs) then fuse with the lysosome. During endosomal maturation, the number of ILVs increases, but the size of endosomes does not decrease despite the consumption of the limiting membrane during ILV formation. Vesicle-mediated trafficking is thought to provide lipids to support MVB biogenesis. However, we have uncovered an unexpected contribution of a large bridge-like lipid transfer protein, Vps13, in this process. Here, we reveal that Vps13-mediated lipid transfer at ER-endosome contact sites is required for the ESCRT pathway. We propose that Vps13 may play a critical role in supplying lipids to the endosome, ensuring continuous ESCRT-mediated sorting during MVB biogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/genética , Lípidos , Cuerpos Multivesiculares , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte de Proteínas
14.
Invest Ophthalmol Vis Sci ; 65(2): 10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315495

RESUMEN

Purpose: To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods: IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results: We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions: We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.


Asunto(s)
Adenina/análogos & derivados , Degeneración Macular , Síndrome de Prader-Willi , Humanos , Epitelio Pigmentado de la Retina/patología , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Degeneración Macular/metabolismo , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo
15.
J Transl Med ; 22(1): 172, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369469

RESUMEN

The global incidence of Chronic Kidney Disease (CKD) is steadily escalating, with discernible linkage to the intricate terrain of intestinal microecology. The intestinal microbiota orchestrates a dynamic equilibrium in the organism, metabolizing dietary-derived compounds, a process which profoundly impacts human health. Among these compounds, short-chain fatty acids (SCFAs), which result from microbial metabolic processes, play a versatile role in influencing host energy homeostasis, immune function, and intermicrobial signaling, etc. SCFAs emerge as pivotal risk factors influencing CKD's development and prognosis. This paper review elucidates the impact of gut microbial metabolites, specifically SCFAs, on CKD, highlighting their role in modulating host inflammatory responses, oxidative stress, cellular autophagy, the immune milieu, and signaling cascades. An in-depth comprehension of the interplay between SCFAs and kidney disease pathogenesis may pave the way for their utilization as biomarkers for CKD progression and prognosis or as novel adjunctive therapeutic strategies.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Microbioma Gastrointestinal/fisiología , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/uso terapéutico , Biomarcadores , Transducción de Señal , Insuficiencia Renal Crónica/tratamiento farmacológico
16.
Opt Express ; 32(3): 3157-3166, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297543

RESUMEN

Photonic skyrmions have been a hot topic in recent years. However, modulating the spin distributions of the skyrmions is still a challenging topic. In this paper, we investigate the detailed spin distributions of photonic skyrmions in thin metal film sandwiched by different dielectrics. We find that the ratios of different spin components can be adjusted by the thickness of the metal film, while the absolute value of total spin can be controlled by the frequency of the light source. Therefore, by choosing proper metal thickness in the preparation process and certain beam frequency in actual experiment, we can get the exact type of spin distribution we prefer. In addition, when the dielectric layers are arranged asymmetrically, the spin distributions can also be modulated significantly by adjustig the ratio of the dielectric constants of the upper and lower dielectric layers. Our results provide a new pathway for the modulation of photonic skyrmions.

17.
J Biophotonics ; 17(3): e202300453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282446

RESUMEN

In recent years, the application of functional near-infrared spectroscopy (fNIRS) and deep learning techniques has emerged as a promising method for personal identification. In this study, we innovatively utilized a deep learning framework and fNIRS data for personal identification. The framework is a one-dimensional convolutional neural network (Conv1D) trained on resting-state fNIRS signals collected from the frontal cortex of adults. In data preprocessing, we employed a sliding window-based data augmentation technique and high-pass filter, which could result in the highest identification accuracy through multiple experiments. Based on a data set consisting of 56 adult participants, the identification accuracy of 90.36% is achieved for training data with a window size of approximately 4.62 s; with the increase in training data window size, the identification accuracy can reach (97.65 ± 2.35)%. Our results suggest that deep learning is valuable for fNIRS-based personal identification, with potential applications in security, biometrics, and healthcare.


Asunto(s)
Mapeo Encefálico , Espectroscopía Infrarroja Corta , Adulto , Humanos , Espectroscopía Infrarroja Corta/métodos , Mapeo Encefálico/métodos , Lóbulo Frontal , Redes Neurales de la Computación
18.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297099

RESUMEN

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Quinasa 2 Dependiente de la Ciclina , Diabetes Mellitus , Retinopatía Diabética , Animales , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , ARN , Pez Cebra/genética
19.
Br J Nutr ; 131(9): 1506-1512, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38178715

RESUMEN

This study compared the concentrations, types and distributions of sialic acid (SA) in human milk at different stages of the postnatal period with those in a range of infant formulas. Breast milk from mothers of healthy, full-term and exclusively breastfed infants was collected on the 2nd (n 246), 7th (n 135), 30th (n 85) and 90th (n 48) day after birth. The SA profiles of human milk, including their distribution, were analysed and compared with twenty-four different infant formulas. Outcome of this observational study was the result of natural exposure. Only SA of type Neu5Ac was detected in human milk. Total SA concentrations were highest in colostrum and reduced significantly over the next 3 months. Approximately 68·7­76·1 % of all SA in human milk were bound to oligosaccharides. Two types of SA, Neu5Ac and Neu5Gc, have been detected in infant formulas. Most SA was present in infant formulas combined with protein. Breastfed infants could receive more SA than formula-fed infants with the same energy intake. Overall, human milk is a preferable source of SA than infant formulas in terms of total SA content, dynamics, distribution and type. These SA profiles in the natural state are worth to be considered by the production of formulas because they may have a great effect on infant nutrition and development.


Asunto(s)
Fórmulas Infantiles , Leche Humana , Ácido N-Acetilneuramínico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Lactancia Materna , China , Calostro/química , Fórmulas Infantiles/química , Fenómenos Fisiológicos Nutricionales del Lactante , Leche Humana/química , Ácido N-Acetilneuramínico/análisis , Oligosacáridos/análisis
20.
RSC Adv ; 14(5): 3000-3009, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239442

RESUMEN

In this paper, a floatation-advanced oxidation two-step process was proposed for deep oil removal of oil-based drilling cuttings (OBDC). In the first stage, a novel and simple degreasing solution was prepared and most of the base oil contained by OBDC was removed by flotation; in the second stage, the oil content of OBDC was further reduced by combined ultrasound + ozone (US + O3) advanced oxidation. The recommended degreasing solution was a mixture of methanol, ammonium chloride, and water with a mass ratio of 1.48.1 : 0.25. The best flotation process was as follows: a mass ratio of OBDC to degreasing solution of 1 : 10, stirring speed of 400 rpm and N2 flotation with a flow rate of 400 mL min-1 for 60 min. The oil content of OBDC can be reduced from 14.57% to 1.42% after flotation treatment and the degreasing solution can be reused more than five times. The optimal process of US + O3 advanced oxidation was as follows: a mass ratio of OBDC to water of 1 : 10, ultrasonic power of 1000 W, and an ozone flow rate of 4.0 L min-1 for 100 min. The oil content of OBDC can be reduced from 1.42% to 0.14% after US + O3 treatment at room temperature. The results of this paper provide a new method and idea for OBDC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...