Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Chem Theory Comput ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747149

RESUMEN

The field of computer-aided synthesis planning (CASP) has witnessed significant growth in recent years. Still, many CASP programs rely on large data sets to train neural networks, resulting in limitations due to the data quality and prior knowledge from chemists. In response, we propose Retrosynthesis Zero (ReSynZ), a reaction template-based method that combines Monte Carlo Tree Search with reinforcement learning inspired by AlphaGo Zero. Unlike other single-step reaction template-based CASP methods, ReSynZ takes complete synthesis paths for complex molecules, determined by reaction rules, as input for training the neural network. ReSynZ enables neural networks trained with relatively small reaction data sets (tens of thousands of data) to generate multiple synthesis pathways for a target molecule and suggest possible reaction conditions. On multiple data sets of molecular retrosynthesis, ReSynZ demonstrates excellent predictive performance compared to existing algorithms. The advantages, such as self-improving model features, flexible reward settings, the potential to surpass human limitations in chemical synthesis route planning, and others, make ReSynZ a valuable tool in chemical synthesis design.

2.
Chin Med ; 19(1): 26, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360696

RESUMEN

BACKGROUND: Immune checkpoint inhibitors, which have attracted much attention in recent years, have achieved good efficacy, but their use is limited by the high incidence of acquired drug resistance. Therefore, there is an urgent need to develop new immunotherapy drugs. Compound taxus chinensis capsule (CTC) is an oral paclitaxel compound drug, clinical results showed it can change the number of regulatory T cells and T helper cell 17 in peripheral blood. Regulating the balance between regulatory T cells and T helper cell 17 is considered to be an effective anticancer strategy. Paclitaxel and ginsenoside metabolite compound K are the main immunomodulatory components, it is not clear that paclitaxel combined with compound K can inhibit tumor development by regulating the balance between regulatory T cell and T helper cell 17. METHODS: MTT, EdU proliferation and plate colony formation assay were used to determine the concentration of paclitaxel and compound K. AnnexinV-FITC/PI staining, ELISA, Western Blot assay, Flow Cytometry and Immunofluorescence were used to investigate the effect of paclitaxel combined with compound K on Lewis cell cultured alone or co-cultured with splenic lymphocyte. Finally, transplanted tumor C57BL/6 mice model was constructed to investigate the anti-cancer effect in vivo. RESULTS: According to the results of MTT, EdU proliferation and plate colony formation assay, paclitaxel (10 nM) and compound K (60 µM) was used to explore the mechanism. The results of Flow Cytometry demonstrated that paclitaxel combined with compound K increased the number of T helper cell 17 and decreased the number of regulatory T cells, which induced pyroptosis of cancer cells. The balance was mediated by the JAK-STAT pathway according to the results of Western Blot and Immunofluorescence. Finally, the in vivo results showed that paclitaxel combined with compound K significantly inhibit the progression of lung cancer. CONCLUSIONS: In this study, we found that paclitaxel combined with compound K can activate CD8+ T cells and induce pyroptosis of tumor cells by regulating the balance between regulatory T cells and T helper cell 17. These results demonstrated that this is a feasible treatment strategy for lung cancer.

3.
Mater Today Bio ; 25: 100956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38322657

RESUMEN

The rational design of multifunctional biomaterials with hierarchical porous structure and on-demand biological activity is of great consequence for bone tissue engineering (BTE) in the contemporary world. The advanced combination of trace element cerium ions (Ce3+) with bone repair materials makes the composite material capable of promoting angiogenesis and enhancing osteoblast activity. Herein, a living and phosphorylated injectable porous hydrogel microsphere (P-GelMA-Ce@BMSCs) is constructed by microfluidic technology and coordination reaction with metal ion ligands while loaded with exogenous BMSCs. Exogenous stem cells can adhere to and proliferate on hydrogel microspheres, thus promoting cell-extracellular matrix (ECM) and cell-cell interactions. The active ingredient Ce3+ promotes the proliferation, osteogenic differentiation of rat BMSCs, and angiogenesis of endotheliocytes by promoting mineral deposition, osteogenic gene expression, and VEGF secretion. The enhancement of osteogenesis and improvement of angiogenesis of the P-GelMA-Ce scaffold is mainly associated with the activation of the Wnt/ß-catenin pathway. This study could provide novel and meaningful insights for treating bone defects with biofunctional materials on the basis of metal ions.

4.
Cancer Lett ; 586: 216675, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280478

RESUMEN

Gallbladder cancer (GBC) is among the most common malignancies of biliary tract system due to its limited treatments. The immunotherapeutic targets for T cells are appealing, however, heterogeneity of T cells hinds its further development. We systematically construct T cell atlas by single-cell RNA sequencing; and utilized the identified gene signatures of high_CNV_T cells to predict molecular subtyping towards personalized therapeutic treatments for GBC. We identified 12 T cell subtypes, where exhausted CD8+ T cells, activated/exhausted CD8+ T cells, and regulatory T cells were predominant in tumors. There appeared to be an inverse relationship between Th17 and Treg populations with Th17 levels significantly reduced, whereas Tregs were concomitantly increased. Furthermore, we first established subtyping criterion to identify three subtypes of GBC based on their pro-tumorigenic microenvironments, e.g., the type 1 group shows more M2 macrophages infiltration, while the type 2 group is infiltrated by highly exhausted CD8+ T cells, B cells and Tregs with suppressive activities. Our study provides valuable insights into T cell heterogeneity and suggests that molecular subtyping based on T cells might provide a potential immunotherapeutic strategy to improve GBC treatment.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias de la Vesícula Biliar , Humanos , Linfocitos T CD8-positivos/metabolismo , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/terapia , Neoplasias de la Vesícula Biliar/metabolismo , Linfocitos T Reguladores/patología , Inmunoterapia , Macrófagos/patología , Microambiente Tumoral
5.
Eur Spine J ; 33(4): 1490-1497, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38062266

RESUMEN

BACKGROUND: Vertebral augmentation, such as vertebroplasty (VP) or kyphoplasty (KP), has been utilized for decades to treat OVCFs; however, the precise impact of this procedure on reducing mortality risk remains a topic of controversy. This study aimed to explore the potential protective effects of vertebral augmentation on mortality in patients with osteoporotic vertebral compression fractures (OVCFs) using a large-scale meta-analysis. MATERIALS AND METHODS: Cochrane Library, Embase, MEDLINE, PubMed and Web of Science databases were employed for literature exploration until May 2023. The hazard ratios (HRs) and 95% confidence intervals (CIs) were utilized as a summary statistic via random-effect models. Statistical analysis was executed using Review Manager 5.3 software. RESULTS: After rigorous screening, a total of five studies with substantial sample sizes were included in the quantitative meta-analysis. The total number of participants included in the study was an 2,421,178, comprising of 42,934 cases of vertebral augmentation and 1,991,244 instances of non-operative management. The surgical intervention was found to be significantly associated with an 18% reduction in the risk of mortality (HR 0.82; 95% CI 0.78, 0.85). Subgroup analysis revealed a remarkable 71% reduction in mortality risk following surgical intervention during short-term follow-up (HR 0.29; 95% CI 0.26, 0.32). Furthermore, KP exhibited a superior and more credible decrease in the risk of mortality when compared to VP treatment. CONCLUSIONS: Based on a comprehensive analysis of large samples, vertebral augmentation has been shown to significantly reduce the mortality risk associated with OVCFs, particularly in the early stages following fractures. Furthermore, it has been demonstrated that KP is more reliable and effective than VP in terms of mitigating mortality risk.


Asunto(s)
Fracturas por Compresión , Cifoplastia , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Vertebroplastia , Humanos , Cifoplastia/métodos , Fracturas por Compresión/cirugía , Fracturas de la Columna Vertebral/etiología , Fracturas Osteoporóticas/cirugía , Vertebroplastia/métodos , Resultado del Tratamiento
6.
Innovation (Camb) ; 5(1): 100542, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38144040

RESUMEN

Reconstruction of osteochondral (OC) defects represents an immense challenge due to the need for synchronous regeneration of special stratified tissues. The revolutionary innovation of bioprinting provides a robust method for precise fabrication of tissue-engineered OCs with hierarchical structure; however, their spatial living cues for simultaneous fulfilment of osteogenesis and chondrogenesis to reconstruct the cartilage-bone interface of OC are underappreciated. Here, inspired by natural OC bilayer features, anisotropic bicellular living hydrogels (ABLHs) simultaneously embedding articular cartilage progenitor cells (ACPCs) and bone mesenchymal stem cells (BMSCs) in stratified layers were precisely fabricated via two-channel extrusion bioprinting. The optimum formulation of the 7% GelMA/3% AlgMA hydrogel bioink was demonstrated, with excellent printability at room temperature and maintained high cell viability. Moreover, the chondrogenic ability of ACPCs and the osteogenic ability of BMSCs were demonstrated in vitro, confirming the inherent differential spatial regulation of ABLHs. In addition, ABLHs exhibited satisfactory synchronous regeneration of cartilage and subchondral bone in vivo. Compared with homogeneous hydrogels, the neo-cartilage and neo-bone in ABLHs were augmented by 23.5% and 20.8%, respectively, and more important, a more harmonious cartilage-bone interface was achieved by ABLHs due to their well-tuned cartilage-bone-vessel crosstalk. We anticipate that such a strategy of tissue-mimetic ABLH by means of bioprinting is capable of spatiotemporal cell-driven regeneration, offering insights into the fabrication of anisotropic living materials for the reconstruction of complex organ defects.

7.
Int Heart J ; 64(6): 1148-1156, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37967985

RESUMEN

Astragalus (Astragalus mongholicus) alleviates myocardial remodeling caused by hypertension. However, the detailed molecular mechanism is unclear. This study aims to investigate the effect of Astragalus on ventricular remodeling in ovariectomized spontaneous hypertensive rats (OVX-SHR).Female SHR/NCrl rats were subjected to bilateral ovariectomy to establish the OVX-SHR model and treated with Astragalus extract by gavage. The hemodynamics and cardiac function parameters were measured. HE and Masson staining were used to detect the pathological structure of myocardial remodeling and observe the hyperplasia of myocardial collagen fibers. The immunohistochemistry tested the level of α-SMA. The expression levels of inflammatory cytokines, IκB, p65, Cleaved-Caspase3, RhoA, and ROCK1/2 were detected using Western blot. The method of qRT-PCR measured the expression of matrix metalloproteinase (MMP-2 and MMP-9).Hemodynamic and cardiac function parameters were significantly improved after a high dose of Astragalus extract and Valsartan treatment. The myocardial integrity of the model group was significantly reduced, arranged loosely, and disordered, while the expression of α-SMA was increased. However, Astragalus extract and Valsartan treatments significantly reduced the pathological damage and α-SMA. The levels of TNF-α, IL-1ß, IL-6, TGF-ß, MMP-2, and MMP-9 in the model group were increased but decreased after Astragalus extract treatment. Adding an ESR1 inhibitor attenuated the improvement effect of Astragalus extract on myocardial remodeling and restored the expression of RhoA and ROCK1/2.Astragalus extract attenuates the cardiac damage in OVX-SHR by downregulating the RhoA/ROCK pathway through ESR1.


Asunto(s)
Astragalus propinquus , Metaloproteinasa 2 de la Matriz , Ratas , Femenino , Animales , Ratas Endogámicas SHR , Metaloproteinasa 9 de la Matriz , Regulación hacia Abajo , Remodelación Ventricular , Transducción de Señal , Valsartán/farmacología
8.
Exp Hematol Oncol ; 12(1): 85, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777797

RESUMEN

BACKGROUND: Immunosuppression induced by programmed cell death protein 1 (PD1) presents a significant constraint on the effectiveness of chimeric antigen receptor (CAR)-T therapy. The potential of combining PD1/PDL1 (Programmed cell death 1 ligand 1) axis blockade with CAR-T cell therapy is promising. However, developing a highly efficient and minimally toxic approach requires further exploration. Our attempt to devise a novel CAR structure capable of recognizing both tumor antigens and PDL1 encountered challenges since direct targeting of PDL1 resulted in systemic adverse effects. METHODS: In this research, we innovatively engineered novel CARs by grafting the PD1 domain into a conventional second-generation (2G) CAR specifically targeting CD19. These CARs exist in two distinct forms: one with PD1 extramembrane domain (EMD) directly linked to a transmembrane domain (TMD), referred to as PE CAR, and the other with PD1 EMD connected to a TMD via a CD8 hinge domain (HD), known as PE8HT CAR. To evaluate their efficacy, we conducted comprehensive assessments of their cytotoxicity, cytokine release, and potential off-target effects both in vitro and in vivo using tumor models that overexpress CD19/PDL1. RESULTS: The findings of our study indicate that PE CAR demonstrates enhanced cytotoxicity and reduced cytokine release specifically towards CD19 + PDL1 + tumor cells, without off-target effects to CD19-PDL1 + tumor cells, in contrast to 2G CAR-T cells. Additionally, PE CAR showed ameliorative differentiation, exhaustion, and apoptosis phenotypes as assessed by flow cytometry, RNA-sequencing, and metabolic parameter analysis, after encountering CD19 + PDL1 + tumor cells. CONCLUSION: Our results revealed that CAR grafted with PD1 exhibits enhanced antitumor activity with lower cytokine release and no PD1-related off-target toxicity in tumor models that overexpress CD19 and PDL1. These findings suggest that our CAR design holds the potential for effectively addressing the PD1 signal.

9.
Regen Biomater ; 10: rbad074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719927

RESUMEN

Treating articular cartilage defects in patients remains a challenging task due to the absence of blood vessels within the cartilage tissue. The regenerative potential is further compromised by an imbalance between anabolism and catabolism, induced by elevated levels of reactive oxygen species. However, the advent of tissue engineering introduces a promising strategy for cartilage regeneration, offering viable solutions such as mechanical support and controlled release of chondrogenic molecules or cytokines. In this study, we developed an antioxidant scaffold by incorporating natural silk fibroin (SF) and kartogenin (KGN)-loaded liposomes (SF-Lipo@KGN). The scaffold demonstrated appropriate pore size, connectivity, and water absorption and the sustained release of KGN was achieved through the encapsulation of liposomes. In vitro experiments revealed that the SF-Lipo@KGN scaffolds exhibited excellent biocompatibility, as evidenced by enhanced cell adhesion, migration, and proliferation of chondrocytes. The SF-Lipo@KGN scaffolds were found to stimulate cartilage matrix synthesis through the activation of the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 antioxidant signaling pathway. In vivo experiments demonstrated the effective promotion of articular cartilage regeneration by the SF-Lipo@KGN scaffolds, which enhanced extracellular matrix anabolism and restored the intrinsic redox homeostasis. Overall, this study successfully developed biomimetic KGN-loaded scaffolds that restore cartilage redox homeostasis, indicating promising prospects for cartilage tissue engineering.

10.
Thorac Cancer ; 14(29): 2962-2975, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37669906

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer related to mortality worldwide, and the main pathological type is lung adenocarcinoma (LUAD). Circular RNAs (circRNAs) have been reported to be modified by N6 -methyladenosine (m6A), which is involved in the progression of diverse tumors. However, the crosstalk between circRNAs and m6A modification has not been well elucidated in LUAD. METHODS: MeRIP-seq and YTHDF2-RIP-seq datasets were explored to identify candidate circRNAs modified by YTHDF2. Dual-luciferase reporter assay, RIP, and rescue assays were performed to explore the relationship between circFUT8 and its parent mRNA of FUT8. In vitro and in vivo experiments were utilized to uncover the function of circFUT8. RESULTS: In this study, we identified a novel m6A-modified circFUT8, derived from exon 3 of FUT8, which was elevated in tumor tissues compared with adjacent noncancerous tissues. The m6A reader YTHDF2 recognized and destabilized circFUT8 in an m6A-dependent manner. YTHDF2 also combined with the line form of FUT8 (mFUT8), and circFUT8 competitively interacted with YTHDF2, blunting its binding to mFUT8, to stabilize the mRNA level of FUT8. Additionally, circFUT8 sponged miR-186-5p to elevate the expression of mFUT8. Finally, we revealed that circFUT8 promoted the malignant progression of LUAD dependent on the oncogenic function of FUT8. CONCLUSIONS: These findings identified a novel m6A-modified circFUT8 recognized and destabilized by YTHDF2, which competitively interacted with YTHDF2 and miR-186-5p to stabilize FUT8 mRNA to promote malignant progression in LUAD.

11.
Adv Healthc Mater ; 12(32): e2302475, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37696643

RESUMEN

Full-range therapeutic regimens for osteoarthritis (OA) should consider organs (joints)-tissues (cartilage)-cells (chondrocytes)-organelles cascade, of which the subcellular mitochondria dominate eukaryotic cells' fate, and thus causally influence OA progression. However, the dynamic regulation of mitochondrial rise and demise in impaired chondrocytes and the exact role of mitochondrial metronome sirtuins 3 (SIRT3) is not clarified. Herein, chondrocytes are treated with SIRT3 natural agonist dihydromyricetin (DMY) or chemical antagonist 3-TYP, respectively, to demonstrate the positive action of SIRT3 on preserving cartilage extracellular matrix (ECM). Molecular mechanical investigations disclose that SIRT3-induced chondroprotection depended on the repression of mitochondrial apoptosis (mtApoptosis) and the activation of mitophagy. Inspired by the high-level matrix proteinases and reactive oxygen species (ROS) in the OA environment, by anchoring gelatin methacrylate (GelMA) and benzenediboronic acid (PBA) to hyaluronic acid methacrylate (HAMA) with microfluidic technology, a dual-responsive hydrogel microsphere laden with DMY is tactfully fabricated and named as DMY@HAMA-GelMA-PBA (DMY@HGP). In vivo injection of DMY@HGP ameliorated cartilage abrasion and subchondral bone sclerosis, as well as promoted motor function recovery in post-traumatic OA (PTOA) model via recouping endogenous mtApoptosis and mitophagy balance. Overall, this study unveils a novel mitochondrial dynamic-oriented strategy, holding great promise for the precision treatment of OA.


Asunto(s)
Osteoartritis , Sirtuina 3 , Humanos , Mitofagia/fisiología , Sirtuina 3/metabolismo , Sirtuina 3/uso terapéutico , Hidrogeles/uso terapéutico , Microesferas , Osteoartritis/tratamiento farmacológico , Condrocitos/metabolismo , Mitocondrias , Apoptosis , Ácido Hialurónico/metabolismo , Metacrilatos/química
12.
Cancer Lett ; 575: 216398, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37730106

RESUMEN

Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, and its molecular pathogenesis remains unclear. Here we explore the functional roles of epithelial membrane protein 3 (EMP3) in GBC progression, which is aberrantly expressed in various types of cancers. The results showed that the expression level of EMP3 was reduced in human GBC tissues compared with non-malignant tissues. Further, the low expression of EMP3 was associated with the poor prognosis of GBC patients by Kaplan-Meier analysis. The ectopic expression of EMP3 inhibited GBC cell proliferation, migration and invasion in vitro and in vivo. Conversely, the depletion of EMP3 promoted GBC cell growth and metastasis. In addition, we found that EMP3 was a target gene of miR-663a, and the downregulation of EMP3 in GBC was attributed to the overexpression of miR-663a. MiR-663a was also shown to be a tumor-promoting factor mediating GBC development. In this study, we demonstrate that downregulation of EMP3 activates MAPK/ERK signaling, which regulates GBC progression. These data reveal the mechanism by which EMP3 inhibits the progression of GBC, suggesting that the miR-663a/EMP3/MAPK/ERK axis may be a new therapeutic target for GBC treatment.

13.
J Orthop Translat ; 42: 15-30, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37560412

RESUMEN

Introduction: Over-activation of oxidative stress due to impaired antioxidant functions in nucleus pulpous (NP) has been identified as a key factor contributing to intervertebral disc degeneration (IVDD). While Kartogenin (KGN) has previously demonstrated antioxidant properties on articular cartilage against osteoarthritis, its effects on NP degeneration have yet to be fully understood. Objectives: This study aimed to investigate the protective effects of KGN on nucleus pulpous cells (NPCs) against an inflammatory environment induced by interleukin (IL)-1ß, as well as to explore the therapeutic potential of KGN-enhanced dynamic hydrogel in preventing IVDD. Methods: NPCs were isolated from rat caudal IVDs and subjected to treatment with KGN at varying concentrations (ranging from 0.01 to 1 â€‹µM) in the presence of IL-1ß. The expression of extracellular matrix (ECM) anabolism markers was quantitatively assessed at both the mRNA and protein levels. Additionally, intracellular reactive oxygen species and antioxidant enzyme expression were evaluated, along with the role of nuclear factor erythroid 2-related factor 2 (NRF2). Based on these findings, a dynamic self-healing hydrogel loaded with KGN was developed through interconnecting networks. Subsequently, KGN-enhanced dynamic hydrogel was administered into rat caudal IVDs that had undergone puncture injury, followed by radiographic analysis and immunohistochemical staining to evaluate the therapeutic efficacy. Results: In vitro treatments utilizing KGN were observed to maintain ECM synthesis and inhibit catabolic activities in IL-1ß-stimulated NPCs. The mechanism behind this protective effect of KGN on NPCs was found to involve the asctivation of NRF2 and downstream antioxidant enzymes, including glutathione peroxidase 1 and heme oxygenase 1. This was further supported by the loss of both antioxidant and anabolic effects upon pharmacological inhibition of NRF2. Furthermore, a self-healing hydrogel was developed and loaded with KGN to achieve localized and sustained release of the compound. The injection of KGN-enhanced hydrogel effectively ameliorated the degradation of NP ECM and mitigated inflammation in a rat model of puncture-induced IVDD. Conclusions: Our results indicate that KGN exhibits potential as a therapeutic agent for NP degeneration, and that KGN-enhanced dynamic hydrogel represents a novel approach for treating IVDD by restoring redox homeostasis in NP.The translational potential of this article: The dysregulation of oxidant and antioxidant balance has been shown to impede the repair and regeneration of NP, thereby hastening the progression of IVDD following injury. The present investigation has demonstrated that the sustained release of KGN promotes the synthesis of ECM in vitro and mitigates the progression of IVDD in vivo by restoring redox equilibrium, thereby presenting a novel therapeutic candidate based on the antioxidant properties of KGN for the treatment of IVDD.

14.
Transplant Proc ; 55(8): 1822-1825, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37558545

RESUMEN

Paxlovid, as a new drug, received emergency approval for the treatment of COVID-19 in China; there is very little experience with kidney transplantation patients taking tacrolimus with perioperative COVID-19 infection. We discontinued tacrolimus on the day of using Paxlovid, and we chose to frequently monitor the concentration of tacrolimus and creatinine early in the course of treatment by enzyme multiplied immunoassay technique (EMIT) and liquid chromatography-mass spectrometry (LC-MS/MS). The results show varying degrees of elevation of creatinine levels in 3 patients, and EMIT may overestimate the true concentration of tacrolimus metabolites compared with LC-MS/MS. All the data comply with the Helsinki Congress and the Declaration of Istanbul.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , Tacrolimus/efectos adversos , Trasplante de Riñón/efectos adversos , Cromatografía Liquida/métodos , Creatinina , Espectrometría de Masas en Tándem , Monitoreo de Drogas/métodos , Inmunosupresores/efectos adversos
15.
PeerJ ; 11: e15672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456863

RESUMEN

A growing body of evidence suggests that anesthetics impact the outcome of patients with cancer after surgical intervention. However, the optimal dose and underlying mechanisms of co-administered anesthetics in lung tumor therapy have been poorly studied. Here, we aimed to investigate the role of combined anesthetics propofol, sufentanil, and rocuronium in treating lung cancer using an orthogonal experimental design and to explore the optimal combination of anesthetics. First, we evaluated the effects of the three anesthetics on the proliferation and invasion of A-549 cells using Cell Counting Kit 8 and Transwell migration and invasion assays. Subsequently, we applied the orthogonal experimental design (OED) method to screen the appropriate concentrations of the combined anesthetics with the most effective antitumor activity. We found that all three agents inhibited the proliferation of A-549 cells in a dose- and time-dependent manner when applied individually or in combination, with the highest differences in the magnitude of inhibition occurring 24 h after combined drug exposure. The optimal combination of the three anesthetics that achieved the strongest reduction in cell viability was 1.4 µmol/L propofol, 2 nmol/L sufentanil, and 7.83 µmol/L rocuronium. This optimal 3-drug combination produced a more beneficial result at 24 h than either single drug. Our results provide a theoretical basis for improving the efficacy of lung tumor treatment and optimizing anesthetic strategies.


Asunto(s)
Anestésicos Combinados , Neoplasias Pulmonares , Humanos , Anestésicos Combinados/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Propofol/farmacología , Rocuronio/farmacología , Sufentanilo/farmacología
16.
Hepatology ; 78(5): 1352-1367, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633260

RESUMEN

BACKGROUND AND AIMS: Nicotinamide N -methyltransferase (NNMT), an enzyme responsible for the methylation of nicotinamide, is involved in many metabolic pathways in adipose tissue and the liver. However, the role of NNMT in editing the tumor immune microenvironment is not well understood. APPROACH AND RESULTS: Here, we identified that NNMT can promote IL6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression by decreasing the tri-methyl-histone H3 levels on the promoters of IL6 and CSF2 (encoding GM-CSF) and CCAAT/Enhancer Binding Protein, an essential transcription factor for IL6 expression, thus promoting differentiation of macrophages into M2 type tumor-associated macrophages and generation of myeloid-derived suppressor cells from peripheral blood mononuclear cells. Treatment of xenografted tumor models overexpressing NNMT gallbladder carcinoma (GBC) cells with the NNMT inhibitor JBSNF-000088 resulted in compromised tumor development and decreased expression levels of IL6, GM-CSF, tumor-associated macrophage marker CD206, and myeloid-derived suppressor cell marker CD33 but increased expression levels of CD8. In addition, elevated expression of NNMT in tumors of patients with GBC was correlated with increased expression levels of CD206 and CD33 but with decreased levels of CD8 and survival of patients. CONCLUSIONS: These data highlight the critical role of NNMT in GBC progression. Inhibition of NNMT by JBSNF-000088 is a potential molecular target for GBC immunotherapy.


Asunto(s)
Neoplasias de la Vesícula Biliar , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/inmunología , Macrófagos/metabolismo , Metiltransferasas , Células Supresoras de Origen Mieloide/metabolismo , Niacinamida , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
17.
Adv Sci (Weinh) ; 10(10): e2206144, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683245

RESUMEN

Mitochondrial homeostasis is of great importance for cartilage integrity and associated with the progression of osteoarthritis (OA); however, the underlying mechanisms are unknown. This study aims to investigate the role of mitochondrial deacetylation reaction and investigate the mechanistic relationship OA development. Silent mating type information regulation 2 homolog 3 (SIRT3) expression has a negative correlation with the severity of OA in both human arthritic cartilage and mice inflammatory chondrocytes. Global SIRT3 deletion accelerates pathological phenotype in post-traumatic OA mice, as evidenced by cartilage extracellular matrix collapse, osteophyte formation, and synovial macrophage M1 polarization. Mechanistically, SIRT3 prevents OA progression by targeting and deacetylating cytochrome c oxidase subunit 4 isoform 2 (COX4I2) to maintain mitochondrial homeostasis at the post-translational level. The activation of SIRT3 by honokiol restores cartilage metabolic equilibrium and protects mice from the development of post-traumatic OA. Collectively, the loss of mitochondrial SIRT3 is essential for the development of OA, whereas SIRT3-mediated proteins deacetylation of COX4I2 rescues OA-impaired mitochondrial respiratory chain functions to improve the OA phenotype. Herein, the induction of SIRT3 provides a novel therapeutic candidate for OA treatment.


Asunto(s)
Osteoartritis , Sirtuina 3 , Humanos , Ratones , Animales , Sirtuina 3/genética , Sirtuina 3/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Oxidorreductasas/metabolismo , Transporte de Electrón , Osteoartritis/metabolismo
18.
Biomater Adv ; 144: 213226, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36481518

RESUMEN

Accelerating angiogenesis of diabetic wounds is crucial to promoting wound healing. Currently, vascular endothelial growth factor (VEGF), an angiogenesis-related bioactive molecule, is widely used in clinic to enhance wound angiogenesis, but it faces problems of inactivation and low utilization due to harsh microenvironment. Here, we developed a novel reactive oxygen species (ROS)-scavenging hydrogel aimed to polarize macrophages toward an anti-inflammatory phenotype, inducing efficient angiogenesis in diabetic wounds. This composite hydrogel with good biosafety and mechanical properties showed sustainable release of bioactive VEGF. Importantly, it could significantly reduce ROS level and rapidly improve wound microenvironment, which ensured the activity of VEGF in vitro and in vivo and successful healing eventually. At the same time, the composite hydrogel exhibited excellent antibacterial properties. In vivo results confirmed good anti-inflammatory, stimulated vascularization and accelerated wound healing attributed to the novel ROS-scavenging hydrogel, which might serve as a promising wound dressing in diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Especies Reactivas de Oxígeno , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas , Antiinflamatorios
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-996645

RESUMEN

@#[摘 要] 肿瘤免疫细胞疗法展现了良好的临床抗肿瘤前景。树突状细胞(DC)识别肿瘤抗原作为机体免疫响应的关键起始步骤,捕获肿瘤抗原后分化成熟,在淋巴结将抗原信号提呈给CD4+ T细胞、CD8+ T细胞等免疫细胞,激发抗肿瘤效应,应用于肿瘤治疗,尤其是实体瘤,被寄予厚望。但由于实体瘤TME复杂的结构特点、DC和T/B细胞免疫响应的机制不清晰等问题犹如崇山峻岭摆在眼前,故未能形成关键理论和技术突破。以CAR-T细胞为代表的精准细胞免疫疗法已表现出优势,但仍面临抗原选择瓶颈。DC治疗性疫苗在临床试验中表现出良好的疗效和安全性,随着DC在TME中关键作用机制的进一步揭示,研究者的目光重新聚焦在DC抗肿瘤效应,推动着DC与其他手段的联合疗法、工程化DC疫苗等实体瘤治疗方案从基础向临床转化,目前正迈入DC临床治疗实体瘤的新阶段。本文系统地对DC治疗实体瘤的临床研究进展、实体瘤TME中DC的种类及其抗肿瘤机制、工程化DC疫苗,以及面临的挑战和应对策略等问题进行了评述。

20.
Arthritis Res Ther ; 24(1): 260, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443838

RESUMEN

BACKGROUND: Intra-articular injection is indicated for mild or moderate osteoarthritis (OA). However, the superiority of cell-based injection and the role of diverse cell sources are still unclear. This study aimed to compare the therapeutic effect of intra-articular injection with mesenchymal stem cells (MSCs) and cell-free methods for OA treatment. METHODS: A literature search of published scientific data was carried out from PubMed, MEDLINE, Embase, Cochrane Library, Web of Science, and China National Knowledge Internet (CNKI). Randomized controlled trials (RCTs) compared the efficacy and safety of MSC and cell-free intra-articular injection treatments for OA with at least 6-month follow-up. RESULTS: Dual network meta-analysis validated the therapeutic advantages of MSC treatments (VAS, Bayesian: 90% versus 10% and SUCRA: 94.9% versus 5.1%; WOMAC total, Bayesian: 83% versus 17% and SUCRA: 90.1% versus 9.9%) but also suggested a potential negative safety induced by cell injection (adverse events, Bayesian: 100% versus 0% and SUCRA: 98.2% versus 1.8%). For the MSC source aspect, adipose mesenchymal stem cells (ADMSCs) and umbilical cord mesenchymal stem cells (UBMSCs) showed a better curative effect on pain relief and function improvement compared with bone marrow mesenchymal stem cells (BMMSCs). CONCLUSION: Intra-articular injection of MSCs is associated with more effective pain alleviation and function improvement than cell-free OA treatment. However, the potential complications induced by MSCs should be emphasized. A comparative analysis of the MSC sources showed that ADMSCs and UBMSCs exerted a better anti-arthritic efficacy than BMMSCs. Schematic illustration of MSC-based intra-articular injection for treating OA. Three major MSCs (UBMSCs, ADMSCs, and BMMSCs) are extracted and expanded in vitro. Subsequently, the amplified MSCs are concentrated and injected into the knee joint to treat OA.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Humanos , Metaanálisis en Red , Inyecciones Intraarticulares , Osteoartritis/tratamiento farmacológico , Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...