Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260254

RESUMEN

Cytokine therapies are potent immunotherapy agents but exhibit severe dose-limiting toxicities. One strategy to overcome this involves engineering cytokines for intratumoral retention following local delivery. Here, we develop a localized cytokine therapy that elicits profound anti-tumor immunity by engineered targeting to the ubiquitous leukocyte receptor CD45. We designed CD45-targeted immunocytokines (αCD45-Cyt) that, upon injection, decorated the surface of leukocytes in the tumor and tumor-draining lymph node (TDLN) without systemic exposure. αCD45-Cyt therapy eradicated both directly treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models. Mechanistically, αCD45-Cyt triggered prolonged pSTAT signaling and reprogrammed tumor-specific CD8+ T cells in the TDLN to exhibit an anti-viral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.

2.
FASEB J ; 37(7): e23008, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37318790

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1, encoding fibrocystin (FPC), but Pkhd1 mutant mice failed to reproduce the human phenotype. In contrast, the renal lesion in congenital polycystic kidney (cpk) mice, with a mutation in Cys1 and cystin protein loss, closely phenocopies ARPKD. Although the nonhomologous mutation diminished the translational relevance of the cpk model, recent identification of patients with CYS1 mutations and ARPKD prompted the investigations described herein. We examined cystin and FPC expression in mouse models (cpk, rescued-cpk (r-cpk), Pkhd1 mutants) and mouse cortical collecting duct (CCD) cell lines (wild type (wt), cpk). We found that cystin deficiency caused FPC loss in both cpk kidneys and CCD cells. FPC levels increased in r-cpk kidneys and siRNA of Cys1 in wt cells reduced FPC. However, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and associated FPC loss impacted the architecture of the primary cilium, but not ciliogenesis. No reduction in Pkhd1 mRNA levels in cpk kidneys and CCD cells suggested posttranslational FPC loss. Studies of cellular protein degradation systems suggested selective autophagy as a mechanism. In support of the previously described function of FPC in E3 ubiquitin ligase complexes, we demonstrated reduced polyubiquitination and elevated levels of functional epithelial sodium channel in cpk cells. Therefore, our studies expand the function of cystin in mice to include inhibition of Myc expression via interaction with necdin and maintenance of FPC as functional component of the NEDD4 E3 ligase complexes. Loss of FPC from E3 ligases may alter the cellular proteome, contributing to cystogenesis through multiple, yet to be defined, mechanisms.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Humanos , Ratones , Animales , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/patología , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo , Riñón/metabolismo , Factores de Transcripción/metabolismo , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...