Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 15(16): 1562-1570, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32613743

RESUMEN

Loss of ß-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase ß-cell mass are less developed. Promoting ß-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring ß-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3ß (GSK3ß) was previously reported to induce primary human ß-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring ß-cell proliferation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Células Secretoras de Insulina/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Relación Estructura-Actividad , Quinasas DyrK
2.
J Med Chem ; 63(6): 2958-2973, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32077280

RESUMEN

Autoimmune deficiency and destruction in either ß-cell mass or function can cause insufficient insulin levels and, as a result, hyperglycemia and diabetes. Thus, promoting ß-cell proliferation could be one approach toward diabetes intervention. In this report we describe the discovery of a potent and selective DYRK1A inhibitor GNF2133, which was identified through optimization of a 6-azaindole screening hit. In vitro, GNF2133 is able to proliferate both rodent and human ß-cells. In vivo, GNF2133 demonstrated significant dose-dependent glucose disposal capacity and insulin secretion in response to glucose-potentiated arginine-induced insulin secretion (GPAIS) challenge in rat insulin promoter and diphtheria toxin A (RIP-DTA) mice. The work described here provides new avenues to disease altering therapeutic interventions in the treatment of type 1 diabetes (T1D).


Asunto(s)
Compuestos Aza/química , Compuestos Aza/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Indoles/química , Indoles/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Compuestos Aza/farmacocinética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Hipoglucemiantes/farmacocinética , Indoles/farmacocinética , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Quinasas DyrK
3.
Nat Commun ; 6: 8372, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26496802

RESUMEN

Insufficient pancreatic ß-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from ß-cells in diabetic patients, no pharmacological agents have been described that increase ß-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust ß-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces ß-cell proliferation, increases ß-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore ß-cell mass, and highlights a tractable pathway for future drug discovery efforts.


Asunto(s)
Proliferación Celular , Glucógeno Sintasa Quinasa 3/genética , Células Secretoras de Insulina/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/enzimología , Masculino , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Piridazinas/farmacología , Quinasas DyrK
4.
J Am Chem Soc ; 135(5): 1669-72, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23330637

RESUMEN

The identification of factors that promote ß cell proliferation could ultimately move type 1 diabetes treatment away from insulin injection therapy and toward a cure. We have performed high-throughput, cell-based screens using rodent ß cell lines to identify molecules that induce proliferation of ß cells. Herein we report the discovery and characterization of WS6, a novel small molecule that promotes ß cell proliferation in rodent and human primary islets. In the RIP-DTA mouse model of ß cell ablation, WS6 normalized blood glucose and induced concomitant increases in ß cell proliferation and ß cell number. Affinity pulldown and kinase profiling studies implicate Erb3 binding protein-1 and the IκB kinase pathway in the mechanism of action of WS6.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Islotes Pancreáticos/efectos de los fármacos , Urea/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Islotes Pancreáticos/citología , Ratones , Estructura Molecular , Peso Molecular , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
5.
Endocrine ; 37(2): 312-21, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20960269

RESUMEN

The growth and renewal of epithelial tissue is a highly orchestrated and tightly regulated process occurring in different tissue types under a variety of circumstances. We have been studying the process of pancreatic regeneration in mice. We have identified a cell surface protein, named EP1, which is expressed on the duct epithelium during pancreatic regeneration. Whereas it is not detected in the pancreas of normal mice, it is found in the intestinal epithelium of normal adult mice, as well as during pancreatic repair following cerulein-induced destruction of the acinar tissue. The distinctive situations in which EP1 is expressed, all of which share in common epithelial cell growth in the gastrointestinal tract, suggest that EP1 is involved in the growth and renewal of epithelial tissues in both the intestine and the pancreas.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Páncreas/citología , Páncreas/fisiología , Secuencia de Aminoácidos , Animales , Diferenciación Celular/fisiología , Quimiocina CXCL12/metabolismo , Intestinos/citología , Intestinos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Mitosis/fisiología , Datos de Secuencia Molecular , Receptores CXCR4/metabolismo , Regeneración/fisiología
6.
Am J Physiol Gastrointest Liver Physiol ; 297(4): G768-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19643954

RESUMEN

Several lines of studies have suggested that activins are critical mediators of inflammation and tissue repair. As activins and their receptors are expressed in the gastrointestinal tract, we tested the hypothesis that activin signaling is involved in the development of colitis by using two murine models of colitis induced by dextran sodium sulfate (DSS) or in mdr1a-/- mice. By immunohistochemistry, expression of activins was found increased in both models and correlated with the severity of inflammation. Activin expression was observed in macrophages as well as in some nonmacrophage cells. Furthermore, while activin receptors are normally expressed in colonic epithelial cells, their expression was further increased in both epithelial cells and inflammatory cells in inflamed colonic mucosa. Moreover, in vitro studies showed that activin A inhibited proliferation and induced apoptosis of intestinal epithelial cells, and this growth inhibition was largely reversed by administration of the activin inhibitor, follistatin. Because we also observed an increased number of apoptotic epithelial cells in both colitis models, the upregulation of activins occurring in colitis could be involved both in the inflammatory process and in growth inhibition of the intestinal epithelium. Importantly, in vivo administration of follistatin attenuated inflammatory cell infiltration during colitis. Rectal bleeding was reduced, and the integrity of epithelium was preserved in the DSS/follistatin-treated group compared with the group treated with DSS alone. Bromodeoxyuridine incorporation studies showed an increase in proliferative epithelial cells in the DSS/follistatin-treated group, suggesting that follistatin accelerates epithelial cell proliferation/repair during colitis. Overall, our results reveal that activin signaling may play an important role in the pathogenesis and resolution of colitis. These findings suggest new therapeutic options in inflammatory bowel diseases.


Asunto(s)
Receptores de Activinas/metabolismo , Activinas/metabolismo , Colitis/metabolismo , Colon/metabolismo , Transducción de Señal , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Receptores de Activinas/genética , Activinas/antagonistas & inhibidores , Activinas/genética , Animales , Apoptosis , Línea Celular , Proliferación Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colitis/patología , Colon/efectos de los fármacos , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Folistatina/administración & dosificación , Humanos , Inmunohistoquímica , Inyecciones Intraperitoneales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba
7.
Dev Dyn ; 237(5): 1255-67, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18393305

RESUMEN

Nodal and its antagonist, Lefty, are important mediators specifying the laterality of the organs during embryogenesis. Nodal signals through activin receptors in the presence of its co-receptor, Cripto. In the present study, we investigated the possible roles of Nodal and Lefty signaling during islet development and regeneration. We found that both Nodal and Lefty are expressed in the pancreas during embryogenesis and islet regeneration. In vitro studies demonstrated that Nodal inhibits, whereas Lefty enhances, the proliferation of a pancreatic cell line. In addition, we showed that Lefty-1 activates MAPK and Akt phosphorylation in these cells. In vivo blockade of endogenous Lefty using neutralizing Lefty-1 monoclonal antibody results in a significantly decreased proliferation of duct epithelial cells during islet regeneration. This is the first study to decipher the expression and function of Nodal and Lefty in pancreatic growth. Importantly, our results highlight a novel function of Nodal-Lefty signaling in the regulation of expansion of pancreatic cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Activinas/metabolismo , Animales , Apoptosis , Línea Celular , Proliferación Celular , Activación Enzimática , Interferón gamma/genética , Interferón gamma/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Factores de Determinación Derecha-Izquierda , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Nodal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración , Factor de Crecimiento Transformador beta/genética
8.
Diabetes ; 56(1): 96-106, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17192470

RESUMEN

Fibroblast growth factors (FGFs) and their receptors (FGFRs) are key signaling molecules for pancreas development. Although FGFR3 is a crucial developmental gene, acting as a negative regulator of bone formation, its participation remains unexplored in pancreatic organogenesis. We found that FGFR3 was expressed in the epithelia in both mouse embryonic and adult regenerating pancreata but was absent in normal adult islets. In FGFR3 knockout mice, we observed an increase in the proliferation of epithelial cells in neonates, leading to a marked increase in islet areas in adults. In vitro studies showed that FGF9 is a very potent ligand for FGFR3 and activates extracellular signal-related kinases (ERKs) in pancreatic cell lines. Moreover, FGFR3 blockade or FGFR3 deficiency led to increased proliferation of pancreatic epithelial cells in vivo. This was accompanied by an increase in the proportion of potential islet progenitor cells. Thus, our results show that FGFR3 signaling inhibits the expansion of the immature pancreatic epithelium. Consequently, this study suggests that FGFR3 participates in regulating pancreatic growth during the emergence of mature islet cells.


Asunto(s)
Células Epiteliales/citología , Islotes Pancreáticos/fisiología , Páncreas/citología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/fisiología , Envejecimiento , Animales , Animales Recién Nacidos , Línea Celular , Células Epiteliales/efectos de los fármacos , Islotes Pancreáticos/citología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Páncreas/embriología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Regeneración , Transducción de Señal/fisiología
9.
Endocrine ; 30(1): 103-12, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17185798

RESUMEN

Gut peptide YY (PYY) plays an important role in regulating metabolism and is expressed during the ontogeny of the pancreas. However, its biological role during endocrine cell formation is not fully understood, and its role, if any, during pancreatic regeneration in the adult has not yet been explored. The knowledge of factors involved in beta cell renewal in adult animals is clearly relevant for the design of treatment strategies for type 1 diabetes. We therefore sought to determine if observations during fetal pancreas formation also apply to pancreatic growth in adult animals. Indeed, we have found marked expansion of the PYY-expressing population during pancreatic regeneration. In addition, we demonstrate the presence of cells co-expressing PYY and the critical pancreatic transcription factor pancreatic duodenal homeobox1 (PDX-1). Interestingly, these cells also co-expressed specific islet hormones during pancreatic development and re-growth, suggesting a developmental relationship. Furthermore, we have found that PYY can act in concert with IGF-1 to stimulate cellular responsiveness in pancreatic epithelial cells in vitro. Our data suggest that PYY may be a mediator of islet cell development, as well as a cofactor for growth factor responses, not only during fetal pancreas formation but also during regeneration in adult animals.


Asunto(s)
Páncreas/fisiología , Péptido YY/fisiología , Regeneración/fisiología , Animales , Diferenciación Celular/fisiología , Células Epiteliales/fisiología , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/fisiología , Interferón gamma/genética , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Péptido YY/genética , Péptido YY/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de la Hormona Gastrointestinal/biosíntesis , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
J Biol Chem ; 281(19): 13574-13580, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16547003

RESUMEN

Inhibitor of DNA binding (Id) proteins bind to and inhibit the function of basic helix-loop-helix (bHLH) transcription factors including those that regulate pancreatic development. Moreover, bone morphogenetic proteins (BMPs) regulate the expression of Ids. We hypothesized that BMP4 and Id proteins play a role in the expansion and differentiation of epithelial progenitor cells. We demonstrate that BMP4 induces the expression of Id2 along with the expansion of AR42J pancreatic epithelial cells. Furthermore, neutralization of BMP4 significantly reduced duct epithelial cell expansion in a mouse model of islet regeneration. BMP4 stimulation promotes Id2 binding to the bHLH transcription factor NeuroD, which is required for the differentiation of pancreatic islet cells. Therefore, our results indicate that BMP4 stimulation blocks the differentiation of endocrine progenitor cells and instead promotes their expansion thereby revealing a novel paradigm of signaling explaining the balance between expansion and differentiation of pancreatic duct epithelial progenitors. Understanding the mechanisms of BMP and Id function elucidates a key step during pancreas embryogenesis, which is important knowledge for expanding pancreatic progenitors in vitro.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Células Secretoras de Insulina/metabolismo , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Proteína 2 Inhibidora de la Diferenciación/genética , Leucemia de Células Plasmáticas , Ratones , Proteínas del Tejido Nervioso/metabolismo , Páncreas/crecimiento & desarrollo , Conductos Pancreáticos/citología , Conductos Pancreáticos/crecimiento & desarrollo , Transducción de Señal
11.
J Cell Mol Med ; 9(2): 331-44, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15963253

RESUMEN

Pancreatic islet transplantation represents an attractive approach for the treatment of diabetes. However, the limited availability of donor islets has largely hampered this approach. In this respect, the use of alternative sources of islets such as the ex vivo expansion and differentiation of functional endocrine cells for treating diabetes has become the major focus of diabetes research. Adult pancreatic stem cells /progenitor cells have yet to be recognized because limited markers exist for their identification. While the pancreas has the capacity to regenerate under certain circumstances, questions where adult pancreatic stem/progenitor cells are localized, how they are regulated, and even if the pancreas harbors a stem cell population need to be resolved. In this article, we review the recent achievements both in the identification as well as in the expansion of pancreatic stem/progenitor cells.


Asunto(s)
Proliferación Celular , Páncreas/citología , Células Madre/citología , Animales , Diferenciación Celular/fisiología , Embrión de Mamíferos/citología , Humanos , Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Modelos Biológicos , Páncreas/fisiología , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Regeneración/fisiología , Células Madre/fisiología
12.
Diabetes ; 53(8): 2024-33, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15277382

RESUMEN

Activins regulate the growth and differentiation of a variety of cells. During pancreatic islet development, activins are required for the specialization of pancreatic precursors from the gut endoderm during midgestation. In this study, we probed the role of activin signaling during pancreatic islet cell development and regeneration. Indeed, we found that both activins and activin receptors are upregulated in duct epithelial cells during islet differentiation. Interestingly, the expression of endogenous cellular inhibitors of activin signaling, follistatin and Cripto, were also found to be augmented. Inhibition of activins significantly enhanced survival and expansion of pancreatic epithelial cells but decreased the numbers of differentiated beta-cells. Our results suggest that the homeostasis of growth and terminal differentiation requires a precise context-dependent regulation of activin signaling. Follistatin participates in this process by promoting expansion of precursor cells during pancreas growth.


Asunto(s)
Activinas/fisiología , Células Epiteliales/citología , Islotes Pancreáticos/fisiología , Páncreas/citología , Receptores de Activinas/fisiología , Activinas/antagonistas & inhibidores , Activinas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Células Epiteliales/efectos de los fármacos , Folistatina/farmacología , Humanos , Interferón gamma/genética , Islotes Pancreáticos/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Proteínas Recombinantes/farmacología
13.
Am J Physiol Endocrinol Metab ; 287(2): E247-54, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15039147

RESUMEN

We assessed the function of the beta(C)-subunit of activin in hepatocytes. We studied the effect of conditioned medium of Chinese hamster ovary (CHO) cell line stably expressing the beta(C) gene (CHO-beta(C)) on growth of AML12 hepatocytes. We also examined the effect of recombinant activin C and transfection of the beta(C) gene by using adenovirus vector. CHO-beta(C) secreted activin C, a homodimer of the beta(C), as well as precursors of the beta(C). The conditioned medium of CHO-beta(C) increased both [(3)H]thymidine incorporation and the cell number in AML12 cells. It also supported survival of AML12 cells in a serum-free condition. Recombinant human activin C also increased both [(3)H]thymidine incorporation and the number of AML12 cells. Transfection of AML12 cells with the beta(C)-subunit led to the stimulation of [(3)H]thymidine incorporation. Analysis of the conditioned medium revealed that the beta(C)-subunit formed a heterodimer with the endogenous beta(A), the formation of which was dependent on the amount of beta(C) expressed. Recombinant activin C did not affect the binding of (125)I-activin A to its receptor or follistatin. These results indicate that activin C stimulates growth of AML12 cells. The beta(C)-subunit modifies the function of the beta(A)-subunit by multiple mechanisms.


Asunto(s)
Hepatocitos/metabolismo , Subunidades beta de Inhibinas/fisiología , Animales , Células CHO/metabolismo , División Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Cricetinae , Cricetulus , Medios de Cultivo Condicionados/metabolismo , Hepatocitos/citología , Humanos , Subunidades beta de Inhibinas/biosíntesis , Ratones , Conformación Proteica , Proteínas Recombinantes , Transfección
14.
J Cell Biol ; 163(4): 859-69, 2003 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-14638861

RESUMEN

The SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse. We show that SDF-1alpha stimulates the phosphorylation of Akt, mitogen-activated protein kinase, and Src in pancreatic duct cells. Furthermore, migration assays indicate a stimulatory effect of SDF-1alpha on ductal cell migration. Importantly, blocking the SDF-1alpha/CXCR4 axis in IFNgamma-nonobese diabetic mice resulted in diminished proliferation and increased apoptosis in the pancreatic ductal cells. Together, these data indicate that the SDF-1alpha-CXCR4 ligand receptor axis is an obligatory component in the maintenance of duct cell survival, proliferation, and migration during pancreatic regeneration.


Asunto(s)
Quimiocinas CXC/metabolismo , Páncreas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas , Receptores CXCR4/metabolismo , Células Madre/metabolismo , Animales , Apoptosis/fisiología , División Celular/fisiología , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Quimiocina CXCL12 , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/metabolismo , Feto , Ligandos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Páncreas/citología , Páncreas/metabolismo , Conductos Pancreáticos/citología , Conductos Pancreáticos/crecimiento & desarrollo , Conductos Pancreáticos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Regeneración/fisiología , Células Madre/citología , Familia-src Quinasas/metabolismo
15.
Diabetes Metab Res Rev ; 19(5): 363-74, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12951644

RESUMEN

Diabetes mellitus results from the anatomical or functional loss of insulin-producing beta cells of the pancreas. Despite significant advances in current treatment, patients with diabetes still do not maintain optimal glucose levels and therefore face debilitating complications such as hypoglycemia, retinopathy or cardiovascular diseases later in life. Islet transplantation therefore holds great promise as an ultimate cure for diabetes. However, the shortage of availability of donor sources of islets for transplantation has largely hampered this therapy. In this respect, the use of alternative sources of islets such as the ex vivo culture and expansion and differentiation of functional endocrine cells for treating diabetes has been a major focus of diabetes research. The identity of the islet stem/progenitor cells has remained either elusive or at least equivocal because of the lack of cell markers for identification of these cells. Recent successes in studying the organogenesis of pancreas as well as in vitro islet progenitor cell identification studies have provided tremendous insight for the cell markers that are essential in the isolation and characterization of these cells prospectively both in vivo and in vitro. If we can identify the markers that will aid the isolation and purification of islet progenitor cells, or factors that determine pancreatic cell fate, we might be able to coerce them from turning into specific endocrine cells or pancreas in vitro. This article will focus on this subject and will review the latest achievements in the study of cell markers for islet progenitor cells.


Asunto(s)
Islotes Pancreáticos/citología , Células Madre/citología , Biomarcadores , División Celular , Diabetes Mellitus/cirugía , Humanos , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos , Regeneración , Células Madre/fisiología , Donantes de Tejidos/provisión & distribución , Expansión de Tejido/métodos
16.
Endocrinology ; 143(9): 3540-7, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12193568

RESUMEN

Activins expressed in progenitor cells of the pancreas regulate differentiation of endocrine cells during development. Neogenesis of beta-cells takes place in adult animals under some conditions, and beta-cells are thought to arise from precursors locating in the pancreatic duct. In the present study, we investigated whether or not activins are expressed in the duct where beta-cell neogenesis is initiated. mRNA for the beta(A)- and beta(B)-subunits was expressed in isolated mouse pancreatic ducts. Immunohistochemically, the beta(A)-subunit was detected in the pancreatic duct and colocalized with cytokeratin, a marker of ductal cells. The beta(A)-subunit was also expressed in nestin-positive cells in the duct. Likewise, the beta(B)-subunit was detected in the pancreatic duct. In addition, mRNA for the type II and type IIB activin receptors was expressed in the duct. Expression of mRNA for two activin subunits was markedly increased after streptozotocin injection. Similarly, the mRNA expression was up-regulated after partial pancreatectomy. These results indicate that activins are expressed in the pancreatic duct and are up-regulated shortly after the reduction of the beta-cell mass. Induction of activins in the duct may be a critical step in the initiation of beta-cell neogenesis.


Asunto(s)
Activinas/genética , Regulación de la Expresión Génica , Islotes Pancreáticos/citología , Proteínas del Tejido Nervioso , Conductos Pancreáticos/metabolismo , Receptores de Activinas/genética , Animales , Glucemia/metabolismo , Diferenciación Celular , Inmunohistoquímica , Subunidades beta de Inhibinas/análisis , Subunidades beta de Inhibinas/genética , Insulina/sangre , Proteínas de Filamentos Intermediarios/análisis , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Nestina , Pancreatectomía , Conductos Pancreáticos/química , Conductos Pancreáticos/citología , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Estreptozocina/farmacología
17.
J Am Soc Nephrol ; 12(8): 1685-1695, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11461941

RESUMEN

This study was conducted to investigate the involvement of the activin-follistatin system in renal regeneration after ischemic injury. Expression of mRNA for the activin beta(A) subunit was not detected in normal kidneys but increased markedly after renal ischemia. Immunoreactive beta(A) subunit was detected in tubular cells of the outer medulla in ischemic but not normal kidneys. Expression of mRNA for follistatin, an antagonist of activin A, was abundant in tubular cells of the outer medulla in normal kidneys and decreased significantly after renal ischemia. For assessment of the role of the activin-follistatin system in renal regeneration after ischemic injury, recombinant follistatin was intravenously infused into rats with renal ischemia, at the time of reperfusion. Exogenous follistatin prevented the histologic changes induced by ischemic injury, reduced apoptosis in tubular cells, and accelerated tubular cell proliferation. Serum levels of creatinine and blood urea nitrogen were significantly lower in follistatin-treated rats. Conversely, intravenous administration of recombinant activin A inhibited tubular cell proliferation after ischemic injury. These results indicate that the activin-follistatin system participates in renal regeneration after ischemic injury. Follistatin administered intravenously accelerates renal regeneration after renal ischemia, presumably by blocking the actions of endogenous activin.


Asunto(s)
Glicoproteínas/fisiología , Inhibinas/fisiología , Isquemia/fisiopatología , Túbulos Renales/fisiopatología , Regeneración/fisiología , Circulación Renal , Receptores de Activinas , Activinas , Animales , Apoptosis/efectos de los fármacos , ADN/biosíntesis , Folistatina , Glicoproteínas/farmacología , Sustancias de Crecimiento/farmacología , Humanos , Inhibinas/farmacología , Isquemia/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Túbulos Renales/patología , Masculino , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento/metabolismo , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...