Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2403311, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874118

RESUMEN

Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.

2.
Small ; : e2401104, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511585

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are considered as a promising candidate for next-generation large-scale energy storage due to their high safety, low cost, and eco-friendliness. Unfortunately, commercialization of ZIBs is severely hindered owing to rampant dendrite growth and detrimental side reactions on the Zn anode. Herein, inspired by the metal-organic complex interphase strategy, the authors apply adenosine triphosphate (ATP) to in situ construct a multifunctional film on the metal Zn surface (marked as ATP@Zn) by a facile etching method. The ATP-induced interfacial layer enhances lipophilicity, promoting uniform Zn2+ flux and further homogenizing Zn deposition. Meanwhile, the functional interlayer improves the anticorrosion ability of the Zn anode, effectively suppressing corrosion and hydrogen evolution. Consequently, the as-prepared ATP@Zn anode in the symmetric cell exhibits eminent plating/stripping reversibility for over 2800 h at 5.0 mA cm-2 and 1 mAh cm-2. Furthermore, the assembled ATP@Zn||MnO2 full cells are investigated to evaluate practical feasibilities. This work provides an efficient and simple strategy to prepare stabilized Zn anode toward high-performance ZIBs.

3.
ACS Omega ; 6(43): 28538-28547, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34746549

RESUMEN

Photocatalysts have been extensively used for hydrogen evolution or organic degradation. In this work, two different heterojunction types of composite photocatalysts, 1T-MoS2@TiO2 with Schottky heterojunction and 2H-MoS2@TiO2 with type-II heterojunction, are synthesized via hydrothermal synthesis. These two composite materials exhibit excellent photocatalytic activity toward the degradation of tannic acid, which is a typical organic in nuclear wastewater. At an optimal loading of 16% 1T-MoS2, the 1T-MoS2@TiO2 shows the highest degradation capacity of 98%, which is 3.2 times higher than that of pure TiO2. The degradation rate of 16% 1T-MoS2@TiO2 is much higher than that of 13% 2H-MoS2@TiO2. The enhanced photocatalytic activity might be attributed to the improved charge transfer according to the mechanism investigation, supported by the X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) analyses. This work provides new opportunities for constructing highly efficient catalysts for nuclear waste disposal.

4.
Nanotechnology ; 32(28)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33032270

RESUMEN

Increasing photoactive areas and oxygen vacancy to improve the separation and utilization of electrons and holes in a photocatalytic process are a guarantee for highly photocatalysis efficiency. In this work, we report a CAs@B-TiO2core-shell nanospheres via a nanoscale water spray assisted method to deposit of black titanium dioxide (B-TiO2) on carbon aerogel sphere (CAs) though slowly hydrolyzing of butyl titanate (e.g. TBOT) in an ethanol-water system. On this basis, furthermore, a facile one-step N2H4 · H2O treatment was used to introduces oxygen vacancies on the surface of TiO2coating layer forming black TiO2. Oxygen vacancies can extend the optical response range of the TiO2shell from the ultraviolet to the visible region, and increase conductivity and charge transport on the interface of core-shell structure. This study reveals the importance of surface oxygen vacancies for reducing band gaps and developing highly active photocatalysts under visible light.

5.
J Phys Chem Lett ; 11(5): 1746-1752, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32048849

RESUMEN

Recent years have witnessed various in-depth research efforts on self-reconstruction behavior toward electrocatalysis. Tracking the phase transformation and evolution of true active sites is of great significance for the development of self-reconstructed electrocatalysts. Here, the optimized atomic sulfur-doped bismuth nanobelt (S-Bi) is fabricated via an electrochemical self-reconstruction evolved from Bi2S3. Advanced technologies have demonstrated that the nonmetallic S atoms have been doped into the lattice Bi frame, leading to the reconstruction of local electronic structure of Bi. The as-prepared S-Bi nanobelt exhibits a remarkable NH3 generation rate of 10.28 µg h-1 mg-1 and Faradaic efficiency of 10.48%. Density functional theory calculations prove that the S doping can significantly lower the energy barrier of the rate-determining step and enlarge the N≡N bond for further dissociation toward N2 fixation. This work not only establishes insights into the evolution process of electrochemically derived self-reconstruction but also unravels the root of the N2 reduction reaction mechanism associated with the atomic nonmetal dopants.

6.
J Phys Chem Lett ; 10(5): 1048-1054, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30777440

RESUMEN

Ammonia borane (AB) is regarded as a highly promising candidate for chemical hydrogen-storage materials. Developing low-cost yet efficient catalysts for the dehydrogenation of AB is central to achieving hydrogen conversion. Here a heterostructure of Ni/Ni2P nanoparticles deposited on a defective carbon framework for the hydrolysis of AB is developed by elaborately controlling phosphorization conditions. The electronic structure and interfacial interaction of the ternary components are probed by synchrotron-based X-ray absorption fine structure and further simulated via density functional theory. By adjusting the content of Ni and Ni2P in the hetrostructure, the optimized hybrid exhibits catalytic performance of H2 generation from the hydrolysis of AB under ambient conditions with a turnover frequency of 68.3 mol (H2) mol-1 (Cat) min-1 and an activation energy ( Ea) of 44.99 kJ mol-1, implying its high potential as an efficient supplement for noble-metal-based catalysts in hydrogen energy applications.

7.
Adv Mater ; 31(8): e1805127, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30633404

RESUMEN

Unravelling the intrinsic mechanism of electrocatalytic oxygen evolution reaction (OER) by use of heterogeneous catalysts is highly desirable to develop related energy conversion technologies. Albeit dynamic self-reconstruction of the catalysts during OER is extensively observed, it is still highly challenging to operando probe the reconstruction and precisely identify the true catalytically active components. Here, a new class of OER precatalyst, cobalt oxychloride (Co2 (OH)3 Cl) with unique features that allow a gradual phase reconstruction during OER due to the etching of lattice anion is demonstrated. The reconstruction continuously boosts OER activities. The reconstruction-derived component delivers remarkable performance in both alkaline and neutral electrolytes. Operando synchrotron radiation-based X-ray spectroscopic characterization together with density functional theory calculations discloses that the etching of lattice Cl- serves as the key to trigger the reconstruction and the boosted catalytic performance roots in the atomic-level coordinatively unsaturated sites (CUS). This work establishes fundamental understanding on the OER mechanism associated with self-reconstruction of heterogeneous catalysts.

8.
Nanotechnology ; 30(6): 065102, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30543196

RESUMEN

Transition metal dichalogenides (TMDCs) with unique layered structures hold promising potential as transducers for photothermal therapy. However, the low photothermal conversion efficiency and poor stability in some cases limit their practical applications. Herein, we demonstrate the fabrication of ultrathin homogeneous hybridized TMDC nanosheets and their use for highly efficient photothermal tumor ablation. In particular, the nanosheets were composed of metallic WSe2 intercalated with polyvinylpyrrolidone (PVP), which was facilely prepared through a solvothermal process from the mixture of selenourea crystals, WCl6 powder along with PVP polymeric nanogel. Our characterizations revealed that the obtained nanosheets exhibited excellent photothermal conversion efficiency, therapeutic demonstration with improved biocompatibility and physiological stability attributing to the combined merits of metallic phase of WSe2 and hydrophilic PVP insertion. Both the histological analysis of vital organs and in vitro/in vivo tests confirmed the nanosheets as actively effective and biologically safe in this phototherapeutic technique. Findings from this non-invasive experiment clearly emphasize the explorable therapeutic efficacy of the layered-based hybrid agents in future cancer treatment planning procedures.


Asunto(s)
Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia/métodos , Povidona/química , Selenio/química , Tungsteno/química , Animales , Línea Celular Tumoral , Femenino , Rayos Infrarrojos/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Neoplasias Experimentales/terapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Temperatura , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Acc Chem Res ; 51(11): 2968-2977, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30375841

RESUMEN

Recent years have witnessed significant development of electrocatalysis for clean energy and related potential technologies. The precise identification toward active sites of catalysts and the monitoring of product information are highly desirable to understand how the materials catalyze a specific electrocatalytic reaction. For a long period, the identification of active sites and the cognition of corresponding catalytic mechanisms are generally based on various ex situ characterization methods which actually could not capture dynamic structure and intermediate information during electrocatalytic processes. With recent developments of in situ and operando characterization techniques, it has been extensively observed that most of the catalysts would undergo structural self-reconstruction as a result of electro-derived oxidation or reduction process of the catalysts at a given potential, often accompanied by the increase or decrease of catalytic activity as well as the change of catalytic selectivity. In fact, such structural self-change in the catalytic process does make it difficult to identify the true catalytically active sites efficiently, thus hindering the understanding of the real catalytic mechanism. Therefore, we believe that understanding the self-reconstruction by the combination of reliable characterization techniques and theoretical calculations holds the key to rational design of advanced catalysts. In this Account, we provide in-depth insights into recent progress regarding structural self-reconstruction of electrocatalysts in several typical electrochemical reactions with the emphasis on fundamental knowledge, structure-property relationships, structural evolution process, and modulation of self-reconstruction. To deliver a clear understanding, it has to be pointed out in advance that these catalysts with drastic structural and activity self-change in electrocatalytic processes are suggested to be called precatalysts under nonreaction conditions. The restructured active components in realistic reaction conditions are true catalysts. The structural self-reconstruction process bridges the precatalysts with true catalysts. To understand the self-reconstruction behavior, the following three critical aspects will be carefully disclosed and discussed in depth. First, fundamental origin of structural self-reconstruction of electrocatalysts is introduced. It is noteworthy that the atomic-level correlations between the self-reconstruction behavior and intrinsic structure of precatalysts are emphasized due to the fact that even if some precatalysts are congeneric, they often exhibit a diverse self-reconstruction phenomenon and catalytic performance. Second, the self-reconstruction process should be monitored by advanced characterization techniques, which is central to precisely unveil the self-reconstruction behavior. In situ or operando characterizations have been considered as judicious methods to track the self-reconstruction, capture dynamic structure and analyze real-time reaction products. Finally, based on the dynamic structure and product information together with comprehensive theory calculations, the enhancement or degradation mechanism of catalytic activities can be unambiguously clarified. With thoughtful studies toward the complete self-reconstruction process of electrocatalysts, some feasible methods to tune the self-reconstruction and improve the performance can be rationally proposed. Based on this progress, we hope to provide new insight into electrocatalysis, particularly the self-reconstruction and true active sites of electrocatalysts, and then to offer guidelines for rational design of advanced electrocatalysts.

10.
Adv Mater ; 30(18): e1707522, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29575370

RESUMEN

Developing highly efficient catalysts for oxygen evolution reaction (OER) in neutral media is extremely crucial for microbial electrolysis cells and electrochemical CO2 reduction. Herein, a facile one-step approach is developed to synthesize a new type of well-dispersed iridium (Ir) incorporated cobalt-based hydroxide nanosheets (nominated as CoIr) for OER. The Ir species as clusters and single atoms are incorporated into the defect-rich hydroxide nanosheets through the formation of rich Co-Ir species, as revealed by systematic synchrotron radiation based X-ray spectroscopic characterizations combining with high-angle annular dark-field scanning transmission electron microscopy measurement. The optimized CoIr with 9.7 wt% Ir content displays highly efficient OER catalytic performance with an overpotential of 373 mV to achieve the current density of 10 mA cm-2 in 1.0 m phosphate buffer solution, significantly outperforming the commercial IrO2 catalysts. Further characterizations toward the catalyst after undergoing OER process indicate that unique Co oxyhydroxide and high valence Ir species with low-coordination structure are formed due to the high oxidation potentials, which authentically contributes to superior OER performance. This work not only provides a state-of-the-art OER catalyst in neutral media but also unravels the root of the excellent performance based on efficient structural identifications.

11.
J Nanosci Nanotechnol ; 18(6): 3844-3849, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442717

RESUMEN

Bone repair microspheres have been widely studied due to their convenience during clinical operations. In this study, beta tricalcium phosphate/sodium alginate/poly(D,L-lactic acid) (ß-TCP/SA/PDLLA) composite microspheres were successfully prepared using the liquid droplet method. Then, ß-TCP/SA/PDLLA composite microspheres were soaked in simulated body fluids (SBF) for 7 days, and tested in an X-ray diffractometer (XRD). The results indicated that sodium alginate (SA) and poly(D,L-lactic acid) (PDLLA) are not limiting factors for the transformation of ß-TCP to HA. Since sodium ions and bicarbonate ions were abundant, the final products were not pure HA but (Na, CO3)-substituted HA. When soaked in SBF, the structure of ß-TCP/SA/PDLLA composite microspheres remained stable for at least 14 days suggesting that their anti-washout ability was suitable. Furthermore, the absence of calcination during the preparation of ß-TCP/SA/PDLLA composite microspheres enabled the easy incorporation of vancomycin into the microspheres in situ at a final embedding ratio of 26.18%. Furthermore, the ß-TCP/SA/PDLLA composite microspheres possessed excellent sustained drug release capability, and the release of vancomycin (92.8 wt.%) lasted for almost 168 h. Our results suggest that the ß-TCP/SA/PDLLA composite microspheres could be used as a promising graft material particularly for bone repair.


Asunto(s)
Alginatos , Fosfatos de Calcio , Sistemas de Liberación de Medicamentos , Ácido Láctico , Microesferas , Ácido Glucurónico , Ácidos Hexurónicos , Poliésteres , Polímeros
12.
Small ; 14(6)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29239096

RESUMEN

Admittedly, the surface atomic structure of heterogenous catalysts toward the electrochemical oxygen reduction reaction (ORR) are accepted as the important features that can tune catalytic activity and even catalytic pathway. Herein, a surface engineering strategy to controllably synthesize a carbon-layer-wrapped cobalt-catalyst from 2D cobalt-based metal-organic frameworks is elaborately demonstrated. Combined with synchrotron radiation X-ray photoelectron spectroscopy, the soft X-ray absorption near-edge structure results confirmed that rich covalent interfacial CoNC bonds are efficiently formed between cobalt nanoparticles and wrapped carbon-layers during the polydopamine-assisted pyrolysis process. The X-ray absorption fine structure and corresponding extended X-ray absorption fine structure spectra further reveal that the wrapped cobalt with Co-N coordinations shows distinct surface distortion and atomic environmental change of Co-based active sites. In contrast to the control sample without coating layers, the 800 °C-annealed cobalt catalyst with N-doped carbon layers enwrapping achieves significantly enhanced ORR activity with onset and half-wave potentials of 0.923 and 0.816 V (vs reversible hydrogen electrode), highlighting the important correlation between surface atomic structure and catalytic property.

13.
ACS Nano ; 11(11): 11574-11583, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29131577

RESUMEN

Developing highly active and low-cost heterogeneous catalysts toward overall electrochemical water splitting is extremely desirable but still a challenge. Herein, we report pyrite NiS2 nanosheets doped with vanadium heteroatoms as bifunctional electrode materials for both hydrogen- and oxygen-evolution reaction (HER and OER). Notably, the electronic structure reconfiguration of pyrite NiS2 is observed from typical semiconductive characteristics to metallic characteristics by engineering vanadium (V) displacement defect, which is confirmed by both experimental temperature-dependent resistivity and theoretical density functional theory calculations. Furthermore, elaborate X-ray absorption spectroscopy measurements reveal that electronic structure reconfiguration of NiS2 is rooted in electron transfer from doped V to Ni sites, consequently enabling Ni sites to gain more electrons. The metallic V-doped NiS2 nanosheets exhibit extraordinary electrocatalytic performance with overpotentials of about 290 mV for OER and about 110 mV for HER at 10 mA cm-2 with long-term stability in 1 M KOH solutions, representing one of the best non-noble-metal bifunctional electrocatalysts to date. This work provides insights into electronic structure engineering from well-designed atomic defect metal sulfide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...