Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Microbiol Res ; 288: 127872, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39146705

RESUMEN

Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of ß-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.

2.
Environ Sci Pollut Res Int ; 31(31): 44401-44414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954329

RESUMEN

Borehole samples were collected from a municipal solid waste (MSW) landfill in Xi'an, China, and subjected to a series of basic geotechnical and compression tests. This study aims to investigate the influence of composition, dry unit weight, moisture content, organic content, and landfill age on the compressibility of MSW. The results show that with increasing landfill age, the compressible components and organic content exhibit a decreasing trend while the dry unit weight increases. The moisture content does not vary significantly. There is also a linear trend between the logarithm of the primary compression strain and vertical stress. In addition, with an increase in compressible components content, moisture content, and organic content, the modified primary compression index (Cc') shows an increasing trend, whereas with an increase in dry unit weight and landfill age, Cc' shows a decreasing trend. Furthermore, regarding the 34 sets of data, authors only selected five data points for a detailed comparative analysis, this decision was made on the basis that these data points are representative. A modified primary compression index prediction model that considers the dry unit weight, moisture content, and landfill age of the MSW as influencing factors results in a fitting coefficient of 0.797. The Cc' values in this study are within the range of 0.12 to 0.36. These findings provide a reference for the vertical expansion design of existing landfills.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Instalaciones de Eliminación de Residuos , China
3.
Waste Manag Res ; : 734242X241261964, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066702

RESUMEN

Accurate assessment of the dynamic strength characteristics of mechanically-biologically treated (MBT) waste is crucial for the construction and safe operation of landfill sites. Herein, samples of MBT waste from the Hangzhou Tianziling landfill were collected and subjected to consolidated undrained cyclic triaxial tests under four confinement levels and six cyclic stress ratios (CSRs). Under cyclic loading, the MBT waste exhibited a critical CSR. If the CSR exceeds the critical value, the MBT waste specimen rapidly undergoes deformation and failure. Dynamic strength of MBT waste decreases with an increase in the number of cyclic vibrations and increases with an increase in confining pressure. Considering the influence of cyclic vibrations and confining pressure, a formula for dynamic strength in terms of cyclic vibrations and confining pressure has been established. The dynamic shear strength parameter ranges for MBT waste were obtained under different seismic magnitudes. We compared the dynamic and static shear strength parameters of MBT waste and municipal solid waste. These study findings can serve as a reference for the dynamic stability analysis of MBT waste landfills.

4.
Acta Biomater ; 184: 323-334, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901753

RESUMEN

The treatment of sepsis caused by multidrug-resistant (MDR) Gram-negative bacterial infections remains challenging. With these pathogens exhibiting resistance to carbapenems and new generation cephalosporins, the traditional antibiotic polymyxin B (PMB) has reemerged as a critical treatment option. However, its severe neurotoxicity and nephrotoxicity greatly limit the clinical application. Therefore, we designed negatively charged high-density lipoprotein (HDL) mimicking nanodiscs as a PMB delivery system, which can simultaneously reduce toxicity and enhance drug efficacy. The negative charge prevented the PMB release in physiological conditions and binding to cell membranes, significantly reducing toxicity in mammalian cells and mice. Notably, nanodisc-PMB exhibits superior efficacy than free PMB in sepsis induced by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Nanodisc-PMB shows promise as a treatment for carbapenem-resistant Gram-negative bacterial sepsis, especially caused by Acinetobacter baumannii, and the nanodiscs could be repurposed for other toxic antibiotics as an innovative delivery system. STATEMENT OF SIGNIFICANCE: Multidrug-resistant Gram-negative bacteria, notably carbapenem-resistant Acinetobacter baumannii, currently pose a substantial challenge due to the scarcity of effective treatments, rendering Polymyxins a last-resort antibiotic option. However, their therapeutic application is significantly limited by severe neurotoxic and nephrotoxic side effects. Prevailing polymyxin delivery systems focus on either reducing toxicity or enhancing bioavailability yet fail to simultaneously achieve both. In this scenario, we have developed a distinctive HDL-mimicking nanodisc for polymyxin B, which not only significantly reduces toxicity but also improves efficacy against Gram-negative bacteria, especially in sepsis caused by CRAB. This research offers an innovative drug delivery system for polymyxin B. Such advancement could notably improve the therapeutic landscape and make a significant contribution to the arsenal against these notorious pathogens.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Polimixina B , Sepsis , Polimixina B/farmacología , Polimixina B/química , Acinetobacter baumannii/efectos de los fármacos , Animales , Infecciones por Acinetobacter/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Ratones , Nanoestructuras/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Lipoproteínas HDL/química
5.
ACS Appl Bio Mater ; 7(5): 3358-3374, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38717870

RESUMEN

Exosomes are promising nanocarriers for drug delivery. Yet, it is challenging to apply exosomes in clinical use due to the limited understanding of their physiological functions. While cellular uptake of exosomes is generally known through endocytosis and/or membrane fusion, the mechanisms of origin-dependent cellular uptake and subsequent cargo release of exosomes into recipient cells are still unclear. Herein, we investigated the intricate mechanisms of exosome entry into recipient cells and intracellular cargo release. In this study, we utilized chiral graphene quantum dots (GQDs) as representatives of exosomal cargo, taking advantage of the superior permeability of chiral GQDs into lipid membranes as well as their excellent optical properties for tracking analysis. We observed that the preferential cellular uptake of exosomes derived from the same cell-of-origin (intraspecies exosomes) is higher than that of exosomes derived from different cell-of-origin (cross-species exosomes). This uptake enhancement was attributed to receptor-ligand interaction-mediated endocytosis, as we identified the expression of specific ligands on exosomes that favorably interact with their parental cells and confirmed the higher lysosomal entrapment of intraspecies exosomes (intraspecies endocytic uptake). On the other hand, we found that the uptake of cross-species exosomes primarily occurred through membrane fusion, followed by direct cargo release into the cytosol (cross-species direct fusion uptake). We revealed the underlying mechanisms involved in the cellular uptake and subsequent cargo release of exosomes depending on their cell-of-origin and recipient cell types. Overall, this study envisions valuable insights into further advancements in effective drug delivery using exosomes, as well as a comprehensive understanding of cellular communication, including disease pathogenesis.


Asunto(s)
Exosomas , Puntos Cuánticos , Puntos Cuánticos/química , Exosomas/metabolismo , Exosomas/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Colorantes Fluorescentes/química , Tamaño de la Partícula , Ensayo de Materiales , Endocitosis , Grafito/química
6.
Hum Vaccin Immunother ; 20(1): 2355037, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38813652

RESUMEN

BACKGROUND: In recent years, infectious diseases like COVID-19 have had profound global socio-economic impacts. mRNA vaccines have gained prominence due to their rapid development, industrial adaptability, simplicity, and responsiveness to new variants. Notably, the 2023 Nobel Prize in Physiology or Medicine recognized significant contributions to mRNA vaccine research. METHODS: Our study employed a comprehensive bibliometric analysis using the Web of Science Core Collection (WoSCC) database, encompassing 5,512 papers on mRNA vaccines from 2003 to 2023. We generated cooperation maps, co-citation analyses, and keyword clustering to evaluate the field's developmental history and achievements. RESULTS: The analysis yielded knowledge maps highlighting countries/institutions, influential authors, frequently published and highly cited journals, and seminal references. Ongoing research hotspots encompass immune responses, stability enhancement, applications in cancer prevention and treatment, and combating infectious diseases using mRNA technology. CONCLUSIONS: mRNA vaccines represent a transformative development in infectious disease prevention. This study provides insights into the field's growth and identifies key research priorities, facilitating advancements in vaccine technology and addressing future challenges.


Asunto(s)
Bibliometría , COVID-19 , Vacunas de ARNm , Humanos , COVID-19/prevención & control , COVID-19/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Investigación Biomédica/tendencias , Desarrollo de Vacunas , SARS-CoV-2/inmunología , SARS-CoV-2/genética , ARN Mensajero/genética
7.
J Vasc Surg Venous Lymphat Disord ; : 101889, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621580

RESUMEN

BACKGROUND: Substantial observational evidence suggests an association between neuropsychiatric conditions and venous thromboembolism (VTE). However, the causal relationship between these two conditions requires further investigation. Therefore, we used a two-sample Mendelian randomization (MR) approach to assess the bidirectional causal effects between four neuropsychiatric conditions and VTE, deep vein thrombosis, and pulmonary embolism (PE). METHODS: Genetic variants associated with four neuropsychiatric conditions (ie, schizophrenia, major depressive disorder [MDD], bipolar disorder, and epilepsy) and VTE, deep vein thrombosis, and PE were selected. Bidirectional univariable and multivariable MR methods were applied to evaluate the causal relationships among these conditions. The primary causal estimates were obtained using the inverse variance weighted method with multiplicative random effects, supplemented by MR Egger regression, weighted median, simple mode, and weighted mode. Sensitivity analysis was conducted using the MR pleiotropy residual sum, funnel plots, and outlier (MR pleiotropy and residual sum and outlier) method. RESULTS: Univariable MR results showed that genetic susceptibility to MDD increases the risk of VTE and PE (VTE: odds ratio [OR], 1.25; 95% confidence interval [CI], 1.08-1.46; P = .004; PE: OR, 1.36; 95% CI, 1.09-1.69; P = .006) and that PE has an adverse causal effect on MDD (OR, 1.02; 95% CI, 1.00-1.04; P = .026). Adjustment for confounders such as obesity, sleep duration, smoking, physical activity, and alcohol consumption revealed that increased genetic susceptibility to MDD is also associated with VTE and PE. CONCLUSIONS: Our results suggest that genetic susceptibility to MDD might have an adverse causal effect on the risk of VTE and PE and that PE has a reverse causal effect on MDD. Prevention and early diagnosis of depression are crucial in the management of VTE and PE.

8.
Adv Sci (Weinh) ; 11(23): e2401047, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569217

RESUMEN

Cuproptosis is an emerging cell death pathway that depends on the intracellular Cu ions. Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and trigger cuproptosis. However, ES can be rapidly removed and metabolized during intravenous administration, leading to a short half-life and limited tumor accumulation, which hampers its clinical application. Here, the study develops a reactive oxygen species (ROS)-responsive polymer (PCP) based on cinnamaldehyde (CA) and polyethylene glycol (PEG) to encapsulate ES-Cu compound (EC), forming ECPCP. ECPCP significantly prolongs the systemic circulation of EC and enhances its tumor accumulation. After cellular internalization, the PCP coating stimulatingly dissociates exposing to the high-level ROS, and releases ES and Cu, thereby triggering cell death via cuproptosis. Meanwhile, Cu2+-stimulated Fenton-like reaction together with CA-stimulated ROS production simultaneously breaks the redox homeostasis, which compensates for the insufficient oxidative stress treated with ES alone, in turn inducing immunogenic cell death of tumor cells, achieving simultaneous cuproptosis and immunotherapy. Furthermore, the excessive ROS accelerates the stimuli-dissociation of ECPCP, forming a positive feedback therapy loop against tumor self-alleviation. Therefore, ECPCP as a nanoplatform for cuproptosis and immunotherapy improves the dual antitumor mechanism of ES and provides a potential optimization for ES clinical application.


Asunto(s)
Cobre , Inmunoterapia , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Inmunoterapia/métodos , Cobre/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/inmunología , Humanos , Modelos Animales de Enfermedad , Acroleína/análogos & derivados , Acroleína/farmacología , Nanopartículas/química , Línea Celular Tumoral , Polietilenglicoles/química , Polímeros/química
9.
Mycoses ; 67(1): e13692, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38214431

RESUMEN

BACKGROUND: The role of artificial intelligence (AI) in the discrimination between pulmonary cryptococcosis (PC) and lung adenocarcinoma (LA) warrants further research. OBJECTIVES: To compare the performances of AI models with clinicians in distinguishing PC from LA on chest CT. METHODS: Patients diagnosed with confirmed PC or LA were retrospectively recruited from three tertiary hospitals in Guangzhou. A deep learning framework was employed to develop two models: an undelineated supervised training (UST) model utilising original CT images, and a delineated supervised training (DST) model utilising CT images with manual lesion annotations provided by physicians. A subset of 20 cases was randomly selected from the entire dataset and reviewed by clinicians through a network questionnaire. The sensitivity, specificity and accuracy of the models and the clinicians were calculated. RESULTS: A total of 395 PC cases and 249 LA cases were included in the final analysis. The internal validation results for the UST model showed a sensitivity of 85.3%, specificity of 81.0%, accuracy of 83.6% and an area under the curve (AUC) of 0.93. Similarly, the DST model exhibited a sensitivity of 88.2%, specificity of 88.1%, accuracy of 88.2% and an AUC of 0.94. The external validation of the two models yielded AUC values of 0.74 and 0.77, respectively. The average sensitivity, specificity and accuracy of 102 clinicians were determined to be 63.1%, 53.7% and 59.3%, respectively. CONCLUSIONS: Both models outperformed the clinicians in distinguishing between PC and LA on chest CT, with the UST model exhibiting comparable performance to the DST model.


Asunto(s)
Adenocarcinoma del Pulmón , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Inteligencia Artificial , Estudios Retrospectivos , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Tomografía Computarizada por Rayos X/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología
10.
Animals (Basel) ; 13(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067063

RESUMEN

African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a lack of effective vaccines and therapeutics. Therefore, rapid and accurate detection is essential for the prevention and control of ASF. The portable DNA endonuclease (Cas12a)-mediated lateral flow strip detection method (Cas12a-LFS) combined with recombinant polymerase amplification (RPA) has been gradually recognized as effective for virus detection including ASFV. In this study, based on the ASFV structural protein p17 gene (D117L), an RPA-Cas12a-LFS detection method was established. The detection method exhibits a sensitivity of up to two gene copies and has no cross-reaction with nine other swine viruses. Thus, the method is highly sensitive and specific. In 68 clinical samples, the coincidence rate of the p17 strip was 100%, compared to the traditional quantitative PCR (qPCR). In conclusion, we have developed a simple, rapid, sensitive, and specific ASFV visual detection method and demonstrated the potential of on-site detection of ASFV.

11.
Acta Pharm Sin B ; 13(9): 3678-3693, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719365

RESUMEN

Polymyxin B and polymyxin E (colistin) are presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae. Yet resistance to this last-line drugs is a major public health threat and is rapidly increasing. Polymyxin S2 (S2) is a polymyxin B analogue previously synthesized in our institute with obviously high antibacterial activity and lower toxicity than polymyxin B and colistin. To predict the possible resistant mechanism of S2 for wide clinical application, we experimentally induced bacterial resistant mutants and studied the preliminary resistance mechanisms. Mut-S, a resistant mutant of K. pneumoniae ATCC BAA-2146 (Kpn2146) induced by S2, was analyzed by whole genome sequencing, transcriptomics, mass spectrometry and complementation experiment. Surprisingly, large-scale genomic inversion (LSGI) of approximately 1.1 Mbp in the chromosome caused by IS26 mediated intramolecular transposition was found in Mut-S, which led to mgrB truncation, lipid A modification and hence S2 resistance. The resistance can be complemented by plasmid carrying intact mgrB. The same mechanism was also found in polymyxin B and colistin induced drug-resistant mutants of Kpn2146 (Mut-B and Mut-E, respectively). This is the first report of polymyxin resistance caused by IS26 intramolecular transposition mediated mgrB truncation in chromosome in K. pneumoniae. The findings broaden our scope of knowledge for polymyxin resistance and enriched our understanding of how bacteria can manage to survive in the presence of antibiotics.

12.
Biol Reprod ; 109(6): 892-903, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37698264

RESUMEN

Perinatal nutrition modulates the hypothalamic neurocircuitries controlling GnRH release, thus programming pubertal maturation in female mammals. Objectives of experiments reported here were to test the hypotheses that prenatal nutrition during mid- to late gestation interacts with postnatal nutrition during the juvenile period in heifer offspring to alter expression of leptin receptor (LepR) variants (ObRa, ObRb, ObRc, ObRt), and lipoprotein transporter molecules (LRP1 and 2) in the choroid plexus, leptin transport across the blood-brain barrier, and hypothalamic-hypophyseal responsiveness to exogenous ovine leptin (oleptin) during fasting. Nutritional programming of heifers employed a 3 × 2 factorial design of maternal (high, H; low, L; and moderate, M) × postnatal (H and L) dietary treatments. Results (Expt. 1) demonstrated that prepubertal heifers born to L dams, regardless of postnatal diet, had reduced expression of the short isoform of ObRc compared to H and M dams, with sporadic effects of undernutrition (L or LL) on ObRb, ObRt, and LRP1. Intravenous administration of oleptin to a selected postpubertal group (HH, MH, LL) of ovariectomized, estradiol-implanted heifers fasted for 56 h (Expt. 2) did not create detectable increases in third ventricle cerebrospinal fluid but increased gonadotropin secretion in all nutritional groups tested. Previous work has shown that leptin enhances gonadotropin secretion during fasting via effects at both hypothalamic and anterior pituitary levels in cattle. Given the apparent lack of robust transfer of leptin across the blood-brain barrier in the current study, effects of leptin at the adenohypophyseal level may predominate in this experimental model.


Asunto(s)
Leptina , Receptores de Leptina , Femenino , Animales , Bovinos , Ovinos , Embarazo , Leptina/genética , Leptina/farmacología , Leptina/metabolismo , Receptores de Leptina/genética , Estado Nutricional , Gonadotropinas/metabolismo , Dieta , Mamíferos/metabolismo
13.
Viruses ; 15(8)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37631972

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has caused great damage to the global pig industry. Innate immunity plays a significant role in resisting viral infection; however, the exact role of innate immunity in the anti-PEDV response has not been fully elucidated. In this study, we observed that various porcine innate immune signaling adaptors are involved in anti-PEDV (AJ1102-like strain) activity in transfected Vero cells. Among these, TRIF and MAVS showed the strongest anti-PEDV activity. The endogenous TRIF, MAVS, and STING were selected for further examination of anti-PEDV activity. Agonist stimulation experiments showed that TRIF, MAVS, and STING signaling all have obvious anti-PEDV activity. The siRNA knockdown assay showed that TRIF, MAVS, and STING are also all involved in anti-PEDV response, and their remarkable effects on PEDV replication were confirmed in TRIF-/-, MAVS-/- and STING-/- Vero cells via the CRISPR approach. For further verification, the anti-PEDV activity of TRIF, MAVS, and STING could be reproduced in porcine IPEC-DQ cells treated with siRNAs. In summary, this study reveals that multiple pattern-recognition receptor (PRR) signaling pathways of porcine innate immunity play an important role in the anti-PEDV infection, providing new and useful antiviral knowledge for prevention and control of PEDV spreading.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Chlorocebus aethiops , Porcinos , Animales , Células Vero , Transducción de Señal , Inmunidad Innata , ARN Interferente Pequeño/genética , Proteínas Adaptadoras del Transporte Vesicular
14.
J Mater Chem B ; 11(31): 7378-7388, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431684

RESUMEN

Tauopathies are a class of neurodegenerative diseases resulting in cognitive dysfunction, executive dysfunction, and motor disturbance. The primary pathological feature of tauopathies is the presence of neurofibrillary tangles in the brain composed of tau protein aggregates. Moreover, tau aggregates can spread from neuron to neuron and lead to the propagation of tau pathology. Although numerous small molecules are known to inhibit tau aggregation and block tau cell-to-cell transmission, it is still challenging to use them for therapeutic applications due to poor specificity and low blood-brain barrier (BBB) penetration. Graphene nanoparticles were previously demonstrated to penetrate the BBB and are amenable to functionalization for targeted delivery. Moreover, these nanoscale biomimetic particles can self-assemble or assemble with various biomolecules including proteins. In this paper, we show that graphene quantum dots (GQDs), as graphene nanoparticles, block the seeding activity of tau fibrils by inhibiting the fibrillization of monomeric tau and triggering the disaggregation of tau filaments. This behavior is attributed to electrostatic and π-π stacking interactions of GQDs with tau. Overall, our studies indicate that GQDs with biomimetic properties can efficiently inhibit and disassemble pathological tau aggregates, and thus block tau transmission, which supports their future developments as a potential treatment for tauopathies.


Asunto(s)
Grafito , Puntos Cuánticos , Tauopatías , Humanos , Grafito/farmacología , Grafito/metabolismo , Biomimética , Proteínas tau , Tauopatías/metabolismo , Tauopatías/patología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología
15.
NPJ Regen Med ; 8(1): 36, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443319

RESUMEN

Mammalian Müller glia (MG) possess limited regenerative capacities. However, the intrinsic capacity of mammalian MG to transdifferentiate to generate mature neurons without transgenic manipulations remains speculative. Here we show that MAP4K4, MAP4K6 and MAP4K7, which are conserved Misshapen subfamily of ste20 kinases homologs, repress YAP activity in mammalian MG and therefore restrict their ability to be reprogrammed. However, by treating with a small molecule inhibitor of MAP4K4/6/7, mouse MG regain their ability to proliferate and enter into a retinal progenitor cell (RPC)-like state after NMDA-induced retinal damage; such plasticity was lost in YAP knockout MG. Moreover, spontaneous trans-differentiation of MG into retinal neurons expressing both amacrine and retinal ganglion cell (RGC) markers occurs after inhibitor withdrawal. Taken together, these findings suggest that MAP4Ks block the reprogramming capacity of MG in a YAP-dependent manner in adult mammals, which provides a novel avenue for the pharmaceutical induction of retinal regeneration in vivo.

16.
ACS Nano ; 17(11): 10191-10205, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37127891

RESUMEN

As nanoscale extracellular vesicles secreted by cells, small extracellular vesicles (sEVs) have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with sEV-based drug delivery systems, there are still challenges to drug loading into sEVs, which hinder the clinical applications of sEVs. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) sEV-loading platform, based on chirality matching with the sEV lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for doxorubicin and siRNA, which is significantly higher than other reported sEV loading techniques.


Asunto(s)
Vesículas Extracelulares , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos
17.
FEBS Open Bio ; 13(3): 556-569, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723232

RESUMEN

Evaluation of gene co-regulation is a powerful approach for revealing regulatory associations between genes and predicting biological function, especially in genetically diverse samples. Here, we applied this strategy to identify transcripts that are co-regulated with unfolded protein response (UPR) genes in cultured fibroblasts from outbred deer mice. Our analyses showed that the transcriptome associated with RASSF1, a tumor suppressor involved in cell cycle regulation and not previously linked to UPR, is highly correlated with the transcriptome of several UPR-related genes, such as BiP/GRP78, DNAJB9, GRP94, ATF4, DNAJC3, and CHOP/DDIT3. Conversely, gene ontology analyses for genes co-regulated with RASSF1 predicted a previously unreported involvement in UPR-associated apoptosis. Bioinformatic analyses indicated the presence of ATF4-binding sites in the RASSF1 promoter, which were shown to be operational using chromatin immunoprecipitation. Reporter assays revealed that the RASSF1 promoter is responsive to ATF4, while ablation of RASSF1 mitigated the expression of the ATF4 effector BBC3 and abrogated tunicamycin-induced apoptosis. Collectively, these results implicate RASSF1 in the regulation of endoplasmic reticulum stress-associated apoptosis downstream of ATF4. They also illustrate the power of gene coordination analysis in predicting biological functions and revealing regulatory associations between genes.


Asunto(s)
Factor de Transcripción Activador 4 , Estrés del Retículo Endoplásmico , Proteínas Supresoras de Tumor , Respuesta de Proteína Desplegada , Proteínas de Ciclo Celular/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Transcriptoma/genética , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 4/metabolismo , Proteínas Supresoras de Tumor/metabolismo
18.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835527

RESUMEN

The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and developed monoclonal antibodies (mAbs) against porcine RLR members RIG-I, MDA5 and LGP2, for which one, one and two hybridomas were obtained, respectively. The porcine RIG-I and MDA5 mAbs each targeted the regions beyond the N-terminal CARDs domains, whereas the two LGP2 mAbs were both directed to the N-terminal helicase ATP binding domain in the Western blotting. In addition, all of the porcine RLR mAbs recognized the corresponding cytoplasmic RLR proteins in the immunofluorescence and immunochemistry assays. Importantly, both RIG-I and MDA5 mAbs are porcine specific, without demonstrating any cross-reactions with the human counterparts. As for the two LGP2 mAbs, one is porcine specific, whereas another one reacts with both porcine and human LGP2. Thus, our study not only provides useful tools for porcine RLR antiviral signaling research, but also reveals the porcine species specificity, giving significant insights into porcine innate immunity and immune biology.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas , Porcinos , Animales , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Anticuerpos Monoclonales , Especificidad de la Especie , Proteína 58 DEAD Box , Inmunidad Innata
19.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711460

RESUMEN

As nanoscale extracellular vesicles secreted by cells, exosomes have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with exosome-based drug delivery systems, there are still challenges to drug loading into exosome, which hinder the clinical applications of exosomes. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) exosome-loading platform, based on chirality matching with the exosome lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for Doxorubicin and siRNA, which is significantly higher than other reported exosome loading techniques.

20.
Microbiol Spectr ; 11(1): e0369922, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36622182

RESUMEN

Enterococci can cause various infectious diseases, including urinary tract infection, wound infection, and life-threatening endocarditis and meningitis. The emergence and transmission of vancomycin-resistant enterococci (VRE) have presented a challenge to clinical treatment. There is an urgent need to develop new strategies to fight against this pathogen. This study investigated the antibacterial and anti-biofilm activity of celastrol (CEL), a natural product originating from Tripterygium wilfordii Hook F, against enterococci, and its adjuvant capacity of restoring the susceptibility of VRE to vancomycin in vitro and in vivo. CEL inhibited all enterococcus strains tested, with MICs ranging from 0.5 to 4 µg/mL. More than 50% of biofilm was eliminated by CEL at 16 µg/mL after 24 h of exposure. The combination of CEL and vancomycin showed a synergistic effect against all 23 strains tested in checkerboard assays. The combination of sub-MIC levels of CEL and vancomycin showed a synergistic effect in a time-kill assay and exhibited significant protective efficacy in Galleria mellonella larval infection model compared with either drug used alone. The underlying mechanisms of CEL were explored by conducting biomolecular binding interactions and an enzyme inhibition assay of CEL on bacterial cell-division protein FtsZ. CEL presented strong binding and suppression ability to FtsZ, with Kd and IC50 values of 2.454 µM and 1.04 ± 0.17 µg/mL, respectively. CEL exhibits a significant antibacterial and synergic activity against VRE in vitro and in vivo and has the potential to be a new antibacterial agent or adjuvant to vancomycin as a therapeutic option in combating VRE. IMPORTANCE The emergence and transmission of VRE pose a significant medical and public health challenge. CEL, well-known for a wide range of biological activities, has not previously been investigated for its synergistic effect with vancomycin against VRE. In the present study, CEL exhibited antibacterial activity against enterococci, including VRE strains, and restored the activity of vancomycin against VRE in vitro and in vivo. Hence, CEL has the potential to be a new antibacterial adjuvant to vancomycin and could provide a promising therapeutic option in combating VRE.


Asunto(s)
Enterococos Resistentes a la Vancomicina , Vancomicina , Vancomicina/farmacología , Antibacterianos/farmacología , Triterpenos Pentacíclicos/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA