Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4615, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816460

RESUMEN

Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.


Asunto(s)
Arabidopsis , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Genotipo , Fenotipo , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Variación Genética , Genoma de Planta , Ambiente , Interacción Gen-Ambiente
2.
Environ Sci Technol ; 58(15): 6487-6498, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38579165

RESUMEN

The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.


Asunto(s)
Mercurio , Animales , Mercurio/toxicidad , Agua de Mar , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Metales
3.
Nat Genet ; 56(5): 970-981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654131

RESUMEN

Barnacles are the only sessile lineages among crustaceans, and their sessile life begins with the settlement of swimming larvae (cyprids) and the formation of protective shells. These processes are crucial for adaptation to a sessile lifestyle, but the underlying molecular mechanisms remain poorly understood. While investigating these mechanisms in the acorn barnacle, Amphibalanus amphitrite, we discovered a new gene, bcs-6, which is involved in the energy metabolism of cyprid settlement and originated from a transposon by acquiring the promoter and cis-regulatory element. Unlike mollusks, the barnacle shell comprises alternate layers of chitin and calcite and requires another new gene, bsf, which generates silk-like fibers that efficiently bind chitin and aggregate calcite in the aquatic environment. Our findings highlight the importance of exploring new genes in unique adaptative scenarios, and the results will provide important insights into gene origin and material development.


Asunto(s)
Thoracica , Animales , Thoracica/genética , Adaptación Fisiológica/genética , Larva/genética , Quitina/metabolismo , Filogenia , Carbonato de Calcio , Elementos Transponibles de ADN/genética , Metabolismo Energético/genética , Evolución Molecular
4.
Nat Commun ; 15(1): 1683, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395938

RESUMEN

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


Asunto(s)
Dipterocarpaceae , Genómica , Bosque Lluvioso , Genoma , Filogenia
5.
Front Microbiol ; 14: 1257935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840740

RESUMEN

The potential for artificial selection at the community level to improve ecosystem functions has received much attention in applied microbiology. However, we do not yet understand what conditions in general allow for successful artificial community selection. Here we propose six hypotheses about factors that determine the effectiveness of artificial microbial community selection, based on previous studies in this field and those on multilevel selection. In particular, we emphasize selection strategies that increase the variance among communities. We then report a meta-analysis of published artificial microbial community selection experiments. The reported responses to community selection were highly variable among experiments; and the overall effect size was not significantly different from zero. The effectiveness of artificial community selection was greater when there was no migration among communities, and when the number of replicated communities subjected to selection was larger. The meta-analysis also suggests that the success of artificial community selection may be contingent on multiple necessary conditions. We argue that artificial community selection can be a promising approach, and suggest some strategies for improving the performance of artificial community selection programs.

6.
Sci Total Environ ; 881: 163375, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044340

RESUMEN

Fungi represent key ecosystem factors that affect plant growth and development and improve soil structure and fertility. Due to changes in environmental conditions, fungi show strong spatial heterogeneity along altitudinal gradients. Current knowledge of the driving mechanisms and effects of soil fungal community construction at high altitudes is very limited on a regional scale. We collected soil samples from alpine grasslands at six altitudinal gradients (2813-5228 m) in the high-altitude area of the Qinghai-Tibet Plateau. The horizontal distance of the sampling zone spanned 1500 km. Distribution patterns, key influencing factors for soil fungal diversity, and dominant mechanisms of ecological processes in the alpine grasslands were analyzed. We found that the diversity of the soil fungal communities was significantly different at different altitudes; with increasing altitude, the number of fungal species increased. Mucoromycota was better adapted to alpine grassland ecosystems at altitudes of above 4000 m. Dispersal limitation was the main ecological control process among stochastic processes. With the increase of altitude, the dominant role of dispersal limitation gradually decreased, and the proportion of other random processes such as ecological drift gradually increased. In this study, soil geochemical factors (soil organic carbon, SOC; total phosphorus, TP) mainly influenced the composition of the fungal community in the low altitude region, while climatic factors (mean annual temperature, MAT) were the key factors and main driving forces for the composition of the soil fungal community in the alpine meadow in the high altitude region. This study supplements the information on the biogeographic distribution patterns and environmental drivers of fungal communities along altitudinal gradients at high altitudes on a regional scale. Our results highlight the effects of temperature change on fungal community composition in high altitude regions of alpine grasslands. Subsurface fungal communities should be considered when predicting the function of alpine grassland ecosystems under future climate change.


Asunto(s)
Ecosistema , Micobioma , Pradera , Biodiversidad , Altitud , Suelo/química , Carbono , Tibet , Microbiología del Suelo
7.
Front Plant Sci ; 14: 1069055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844068

RESUMEN

Mangrove forests inhabit tropical or subtropical intertidal zones and have remarkable abilities in coastline protection. Kandelia obovata is considered the most cold-tolerant mangrove species and has been widely transplanted to the north subtropical zone of China for ecological restoration. However, the physiological and molecular mechanisms of K. obovata under colder climate was still unclear. Here, we manipulated the typical climate of cold waves in the north subtropical zone with cycles of cold/recovery and analyzed the physiological and transcriptomic responses of seedlings. We found that both physiological traits and gene expression profiles differed between the first and later cold waves, indicating K. obovata seedlings were acclimated by the first cold experience and prepared for latter cold waves. 1,135 cold acclimation-related genes (CARGs) were revealed, related to calcium signaling, cell wall modification, and post-translational modifications of ubiquitination pathways. We identified the roles of CBFs and CBF-independent transcription factors (ZATs and CZF1s) in regulating the expression of CARGs, suggesting both CBF-dependent and CBF- independent pathways functioned in the cold acclimation of K. obovata. Finally, we proposed a molecular mechanism of K. obovata cold acclimation with several key CARGs and transcriptional factors involved. Our experiments reveal strategies of K. obovata coping with cold environments and provide prospects for mangrove rehabilitation and management.

8.
New Phytol ; 236(3): 1212-1224, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35706383

RESUMEN

Ecological character displacement (ECD) refers to a pattern of increased divergence at sites where species ranges overlap caused by competition for resources. Although ECD is believed to be common, there are few in-depth studies that clearly establish its existence, especially in plants. Thus, we have compared leaf traits in allopatric and sympatric populations of two East Asian deciduous oaks: Quercus dentata and Quercus aliena. In contrast to previous studies, we define sympatry and allopatry at a local scale, thereby comparing populations that can or cannot directly interact. Using genetic markers, we found greater genetic divergence between the two oak species growing in mixed stands and inferred that long-term gene flow has predominantly occurred asymmetrically from the cold-tolerant species (Q. dentata) to the warm-demanding later colonizing species (Q. aliena). Analysis of leaf traits revealed greater divergence in mixed than in pure oak stands. This was mostly due to the later colonizing species being characterized by more resource-conservative traits in the presence of the other species. Controlling for relevant environmental differences did not alter these conclusions. These results suggest that asymmetric trait divergence can take place where species coexist, possibly due to the imbalance in demographic history of species resulting in asymmetric inter-specific selection pressures.


Asunto(s)
Quercus , Flujo Génico , Marcadores Genéticos , Fenotipo , Quercus/genética , Simpatría
9.
Front Plant Sci ; 13: 841154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310665

RESUMEN

Salt stress threatens plant growth, development and crop yields, and has become a critical global environmental issue. Increasing evidence has suggested that the epigenetic mechanism such as DNA methylation can mediate plant response to salt stress through transcriptional regulation and transposable element (TE) silencing. However, studies exploring genome-wide methylation dynamics under salt stress remain limited, in particular, for studies on multiple genotypes. Here, we adopted four natural accessions of the model species Arabidopsis thaliana and investigated the phenotypic and genome-wide methylation responses to salt stress through whole-genome bisulfite sequencing (WGBS). We found that salt stress significantly changed plant phenotypes, including plant height, rosette diameter, fruit number, and aboveground biomass, and the change in biomass tended to depend on accessions. Methylation analysis revealed that genome-wide methylation patterns depended primarily on accessions, and salt stress caused significant methylation changes in ∼ 0.1% cytosines over the genomes. About 33.5% of these salt-induced differential methylated cytosines (DMCs) were located to transposable elements (TEs). These salt-induced DMCs were mainly hypermethylated and accession-specific. TEs annotated to have DMCs (DMC-TEs) across accessions were found mostly belonged to the superfamily of Gypsy, a type II transposon, indicating a convergent DMC dynamic on TEs across different genetic backgrounds. Moreover, 8.0% of salt-induced DMCs were located in gene bodies and their proximal regulatory regions. These DMCs were also accession-specific, and genes annotated to have DMCs (DMC-genes) appeared to be more accession-specific than DMC-TEs. Intriguingly, both accession-specific DMC-genes and DMC-genes shared by multiple accessions were enriched in similar functions, including methylation, gene silencing, chemical homeostasis, polysaccharide catabolic process, and pathways relating to shifts between vegetative growth and reproduction. These results indicate that, across different genetic backgrounds, methylation changes may have convergent functions in post-transcriptional, physiological, and phenotypic modulation under salt stress. These convergent methylation dynamics across accession may be autonomous from genetic variation or due to convergent genetic changes, which requires further exploration. Our study provides a more comprehensive picture of genome-wide methylation dynamics under salt stress, and highlights the importance of exploring stress response mechanisms from diverse genetic backgrounds.

10.
Trends Ecol Evol ; 37(3): 193-196, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35000798

RESUMEN

Greenspaces represent an ark for urban biodiversity, but understanding their carrying capacity to sustain species remains challenging. Old greenspaces that were fragmented from natural habitats are now overcrowded, while revegetated new greenspaces remain vacant. This is because they have different processes leading towards biodiversity equilibrium, and conservation management needs to differentiate between fragmented and revegetated greenspaces.


Asunto(s)
Biodiversidad , Ecosistema , Ciudades , Conservación de los Recursos Naturales
11.
BMC Plant Biol ; 21(1): 341, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281510

RESUMEN

BACKGROUND: Restoration through planting is the dominant strategy to conserve mangrove ecosystems. However, many of the plantations fail to survive. Site and seeding selection matters for planting. The process of afforestation, where individuals were planted in a novel environment, is essentially human-controlled transplanting events. Trying to deepen and expand the understanding of the effects of transplanting on plants, we have performed a seven-year-long reciprocal transplant experiment on Kandelia obovata along a latitudinal gradient. RESULTS: Combined phenotypic analyses and next-generation sequencing, we found phenotypic discrepancies among individuals from different populations in the common garden and genetic differentiation among populations. The central population with abundant genetic diversity and high phenotypic plasticity had a wide plantable range. But its biomass was reduced after being transferred to other latitudes. The suppressed expression of lignin biosynthesis genes revealed by RNA-seq was responsible for the biomass reduction. Moreover, using whole-genome bisulfite sequencing, we observed modification of DNA methylation in MADS-box genes that involved in the regulation of flowering time, which might contribute to the adaptation to new environments. CONCLUSIONS: Taking advantage of classical ecological experiments as well as multi-omics analyses, our work observed morphology differences and genetic differentiation among different populations of K. obovata, offering scientific advice for the development of restoration strategy with long-term efficacy, also explored phenotypic, transcript, and epigenetic responses of plants to transplanting events between latitudes.


Asunto(s)
Rhizophoraceae/crecimiento & desarrollo , Rhizophoraceae/genética , Biomasa , Conservación de los Recursos Naturales , Metilación de ADN , ADN de Plantas , Ecosistema , Variación Genética , Genética de Población , Lignanos/biosíntesis , Fenotipo , Filogeografía , RNA-Seq
12.
Nat Ecol Evol ; 5(7): 974-986, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34002050

RESUMEN

Many insects metamorphose from antagonistic larvae into mutualistic adult pollinators, with reciprocal adaptation leading to specialized insect-plant associations. It remains unknown how such interactions are established at molecular level. Here we assemble high-quality genomes of a fig species, Ficus pumila var. pumila, and its specific pollinating wasp, Wiebesia pumilae. We combine multi-omics with validation experiments to reveal molecular mechanisms underlying this specialized interaction. In the plant, we identify the specific compound attracting pollinators and validate the function of several key genes regulating its biosynthesis. In the pollinator, we find a highly reduced number of odorant-binding protein genes and an odorant-binding protein mainly binding the attractant. During antagonistic interaction, we find similar chemical profiles and turnovers throughout the development of galled ovules and seeds, and a significant contraction of detoxification-related gene families in the pollinator. Our study identifies some key genes bridging coevolved mutualists, establishing expectations for more diffuse insect-pollinator systems.


Asunto(s)
Ficus , Avispas , Adaptación Fisiológica , Animales , Humanos , Polinización , Simbiosis
13.
Front Plant Sci ; 12: 695746, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185942

RESUMEN

Temperature is one of the climatic factors that shape the geographic distribution of plant populations. Mangroves are temperature-sensitive plants, and their distributions are severely limited by low temperatures. It is unknown, however, to what extent temperature contributes to their population differentiation and evolution. Kandelia obovata (Rhizophoraceae) is a mangrove species with high cold tolerance in the Northern Hemisphere. We investigated the phenotypic responses of an artificial population of K. obovata, with plants transplanted from different source populations, to extremely low temperatures during winter of 2015-2016 in Yueqing County (28°20'N), Zhejiang Province of China. Using two binary traits, "with/without leaves alive on the branches" and "with/without alive buds on the tips of branches," we classified plants in this artificial population into strong, moderate and poor cold resistance groups. We further assessed the genetic diversity, structure and differentiation of these three groups, as well as five natural populations along a latitudinal gradient using ten nuclear and six plastid microsatellite markers. Microsatellite data revealed genetic differentiation among the natural populations along the latitudinal gradient. Molecular data indicated that the cold tolerance of three groups in the artificial population was associated with their geographic origins, and that the most cold-tolerant group came from the northernmost natural population. Our study thus indicates that natural populations of K. obovata may have evolved divergent capacity of cold tolerance.

14.
Ecol Lett ; 23(11): 1719-1720, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32844559

RESUMEN

The comment by Sánchez-Tójar et al. (2020, Ecol Lett) questioned the methodology, transparency and conclusion of our study (Ecol Lett, 22, 2019, 1976). The comment has overlooked important evolutionary assumptions in their reanalysis, and the issues raised were in fact dealt with through the peer-review process. Far from being biased, the key conclusion of our meta-analysis still stands; transgenerational effects are largely adaptive.

15.
Ecol Lett ; 22(11): 1976-1986, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31436014

RESUMEN

The adaptive value of transgenerational effects (the ancestor environmental effects on offspring) in changing environments has received much attention in recent years, but the related empirical evidence remains equivocal. Here, we conducted a meta-analysis summarising 139 experimental studies in plants and animals with 1170 effect sizes to investigate the generality of transgenerational effects across taxa, traits, and environmental contexts. It was found that transgenerational effects generally enhanced offspring performance in response to both stressful and benign conditions. The strongest effects are in annual plants and invertebrates, whereas vertebrates appear to benefit mostly under benign conditions, and perennial plants show hardly any transgenerational responses at all. These differences among taxonomic/life-history groups possibly reflect that vertebrates can avoid stressful conditions through their mobility, and longer-lived plants have alternative strategies. In addition to environmental contexts and taxonomic/life-history groups, transgenerational effects also varied among traits and developmental stages of ancestors and offspring, but the effects were similarly strong across three generations of offspring. By way of a more comprehensive data set and a different effect size, our results differ from those of a recent meta-analysis, suggesting that transgenerational effects are widespread, strong and persistent and can substantially impact the responses of plants and animals to changing environments.


Asunto(s)
Clima , Plantas , Animales , Invertebrados , Fenotipo
16.
Mol Ecol ; 28(17): 4012-4027, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31339595

RESUMEN

Genetic admixture, the intraspecific hybridization among divergent introduced sources, can immediately facilitate colonization via hybrid vigor and profoundly enhance invasion via contributing novel genetic variation to adaption. As hybrid vigor is short-lived, provisioning adaptation is anticipated to be the dominant and long-term profit of genetic admixture, but the evidence for this is rare. We employed the 30 years' geographic-scale invasion of the salt marsh grass, Spartina alterniflora, as an evolutionary experiment and evaluated the consequences of genetic admixture by combining the reciprocal transplant experiment with quantitative and population genetic surveys. Consistent with the documentation, we found that the invasive populations in China had multiple origins from the southern Atlantic coast and the Gulf of Mexico in the US. Interbreeding among these multiple sources generated a "hybrid swarm" that spread throughout the coast of China. In the northern and mid-latitude China, natural selection greatly enhanced fecundity, plant height and shoot regeneration compared to the native populations. Furthermore, genetic admixture appeared to have broken the negative correlation between plant height and shoot regeneration, which was genetically-based in the native range, and have facilitated the evolution of super competitive genotypes in the invasive range. In contrast to the evolved northern and mid-latitude populations, the southern invasive populations showed slight increase of plant height and shoot regeneration compared to the native populations, possibly reflecting the heterotic effect of the intraspecific hybridization. Therefore, our study suggests a critical role of genetic admixture in accelerating the geographic invasion via provisioning rapid adaptive evolution.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Poaceae/genética , Cloroplastos/genética , Genética de Población , Haplotipos/genética , Especies Introducidas , Fenotipo , Selección Genética
17.
Heredity (Edinb) ; 121(3): 257-265, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29875373

RESUMEN

Increasing evidence for epigenetic variation within and among natural plant populations has led to much speculation about its role in the evolution of plant phenotypes. However, we still have a very limited understanding of the evolutionary potential of epigenetic variation, in particular in comparison to DNA sequence-based variation. To address this question, we compared the magnitudes of heritable phenotypic variation in epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana-lines that mainly differ in DNA methylation but only very little in DNA sequence-with other types of A. thaliana lines that differ strongly also in DNA sequence. We grew subsets of two epiRIL populations with subsets of two genetic RIL populations, of natural ecotype collections, and of lines from a natural population in a common environment and assessed their heritable variation in growth, phenology, and fitness. Among-line phenotypic variation and broad-sense heritabilities tended to be largest in natural ecotypes, but for some traits the variation among epiRILs was comparable to that among RILs and natural ecotypes. Within-line phenotypic variation was generally similar in epiRILs, RILs, and ecotypes. Provided that phenotypic variation in epiRILs is mainly caused by epigenetic differences, whereas in RILs and natural lines it is largely driven by sequence variation, our results indicate that epigenetic variation has the potential to create phenotypic variation that is stable and substantial, and thus of evolutionary significance.


Asunto(s)
Arabidopsis/genética , Evolución Biológica , Ecotipo , Epigénesis Genética , Variación Genética , Genética de Población , Carácter Cuantitativo Heredable , Arabidopsis/fisiología , Variación Biológica Poblacional , Metilación de ADN , ADN de Plantas
18.
New Phytol ; 197(1): 314-322, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23121242

RESUMEN

Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana--lines that are nearly isogenic but highly variable at the level of DNA methylation--to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.


Asunto(s)
Arabidopsis/genética , Evolución Biológica , Metilación de ADN , Epigénesis Genética , Fenotipo , Arabidopsis/fisiología , Cruzamientos Genéticos , ADN de Plantas/genética , Sequías , Flores/genética , Flores/fisiología , Mutación , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Carácter Cuantitativo Heredable , Selección Genética
19.
Mol Ecol ; 19(9): 1774-86, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20529068

RESUMEN

Aquatic plant invasions are often associated with long-distance dispersal of vegetative propagules and prolific clonal reproduction. These reproductive features combined with genetic bottlenecks have the potential to severely limit genetic diversity in invasive populations. To investigate this question we conducted a global scale population genetic survey using amplified fragment length polymorphism markers of the world's most successful aquatic plant invader -Eichhornia crassipes (water hyacinth). We sampled 1140 ramets from 54 populations from the native (South America) and introduced range (Asia, Africa, Europe, North America, Central America and the Caribbean). Although we detected 49 clones, introduced populations exhibited very low genetic diversity and little differentiation compared with those from the native range, and approximately 80% of introduced populations were composed of a single clone. A widespread clone ('W') detected in two Peruvian populations accounted for 70.9% of the individuals sampled and dominated in 74.5% of the introduced populations. However, samples from Bangladesh and Indonesia were composed of different genotypes, implicating multiple introductions to the introduced range. Nine of 47 introduced populations contained clonal diversity suggesting that sexual recruitment occurs in some invasive sites where environmental conditions favour seedling establishment. The global patterns of genetic diversity in E. crassipes likely result from severe genetic bottlenecks during colonization and prolific clonal propagation. The prevalence of the 'W' genotype throughout the invasive range may be explained by stochastic sampling, or possibly because of pre-adaptation of the 'W' genotype to tolerate low temperatures.


Asunto(s)
Eichhornia/genética , Genética de Población , Polimorfismo Genético , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Análisis por Conglomerados , ADN de Plantas/genética , Eichhornia/fisiología , Ambiente , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...