Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 31(2): 459-466, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32476338

RESUMEN

Straw mulching and subsoiling can protect soil and improve soil structure. However, long-term continuous subsoiling cannot continuously gain yield increasing and soil improvement. To realize continuous soil improvement and yield enhancement, a long-term experiment on subsoiling alternation patterns was carried out with spring maize continuous cropping in the Loess Plateau in 2007-2016. The subsoiling alternation patterns were no-tillage/conventional tillage/subsoiling (NT/CT/ST) and subsoiling/conventional tillage (ST/CT), with continuous subsoiling (ST) as control. We analyzed the effects of the different patterns on soil physical and chemical properties and maize yield. The results showed that, compared with the ST, the mechanical-stable aggregates (DR0.25) and water-stable aggregates (WR0.25) in NT/CT/ST were significantly increased by 9.2% and 21.9%, with the mean weight diameter (MWD) and geometrical mean diameter (GMD) being significantly increased. The WR0.25 in ST/CT was significantly increased by 11.9%. In 0-20 cm soil layer, soil bulk density in NT/CT/ST and ST/CT decreased by 7.0% and 11.5%, and soil porosity increased by 8.4% and 13.9%, respectively. In 20-40 cm soil layer, soil bulk density in ST/CT increased by 6.9%, and soil porosity decreased by 5.7%. In the NT/CT/ST, soil total nitrogen and organic matter contents significantly increased, but soil total phosphorus and total potassium contents reduced. The multi-year average grain yield of spring maize in NT/CT/ST was 10.2% higher than ST and 4.8% higher than ST/CT. The DR0.25, WR0.25, soil total nitrogen content and soil organic carbon content were all positively correlated with maize yield, indicating such changes faci-litated corn grain yield. Considering the effects on soil fertility and corn yield, the NT/CT/ST model was conducive to soil fertility, soil structural stability and higher maize yield.


Asunto(s)
Suelo , Zea mays , Agricultura , Carbono , China
2.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2621-2629, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34494784

RESUMEN

To get a scientific pattern for nitrogen-reducing and efficiency-increasing production of spring maize in Weibei dryland, we conducted an in-situ field experiment of spring maize (Zhengdan 958 and Shaandan 8806) under dryland farming from 2016 to 2019 in Heyang County, located in Weibei dryland of Shaanxi. There were five nitrogen (N) treatments, including 360 kg·hm-2(N360, a rate commonly adopted by local farm households), 270 kg·hm-2(N270), 150-180 kg·hm-2(N150-180), 75-90 kg·hm-2(N75-90) and 0 kg·hm-2(N0). We investigated the effects of reduced nitrogen application on maize yield, nitrogen uptake and utilization of spring maize and soil nitrate residue. The results showed that: 1) Maize yield of both varieties at N150-180 was increased by 0.9%-7.1% and nitrogen uptake was decreased by 4.1%-4.6%, while average reco-very efficiency, partial-factor productivity and agronomic efficiency of N at N150-180 were increased by 79.3%-83.6%, 105.9%-157.7%, and 101.9%-114.1% compared with those at N360, respectively. 2) The contents of residual nitrate increased significantly when nitrogen application rate was more than 180 kg·hm-2, while nitrogen uptake was significantly reduced under rainfall shortage, and thus resulted in increasing soil residual nitrogen. After four-year treatments, the residual nitrate was up to 504.7-620.8 kg·hm-2 in 0-200 cm soil layer, with a peak in 80-140 cm soil layer. There was a risk of nitrate leaching. According to the comprehensive evaluation for annual yield, nitrogen use efficiency and soil nitrate residue, the optimum N application rate was recommended to be 150-180 kg N·hm-2 for spring maize in Weibei dryland.


Asunto(s)
Nitrógeno , Suelo , Fertilizantes , Nitratos , Nitrógeno/análisis , Zea mays
3.
ACS Appl Mater Interfaces ; 7(33): 18628-37, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26262951

RESUMEN

Systemic administration of chemotherapeutic agents can cause indiscriminate drug distribution and severe toxicity. Until now, encapsulation and targeting of drugs have typically relied on synthetic vehicles, which cannot minimize the clearance by the renal system and may also increase the risk of chemical side effects. Cell membrane capsules (CMCs) provide a generic and far more natural approach to the challenges of drug encapsulation and delivery in vivo. Here aptamer AS1411, which can recognize and bind overexpressed nucleolin on a cancer cell membrane, was chemically conjugated onto CMCs. As a result, AS1411 modified CMCs showed enhanced ingestion in certain cancer cells in vitro and accumulation in mouse cancer xenografts in vivo. Chemotherapeutics and contrast agents with therapeutically significant concentrations can be packaged into CMCs by reversible permeating their plasma membranes. The systematic administration of cancer targeting CMCs loaded with doxorubicin hydrochloride can significantly inhibit tumor growth in mouse xenografts, with significantly reduced toxicity compared to free drug. These findings suggest that cancer targeting CMCs may have considerable benefits in drug delivery and cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Cápsulas/química , Membrana Celular/química , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Línea Celular , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/toxicidad , Portadores de Fármacos/química , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal , Neoplasias/patología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Distribución Tisular , Trasplante Heterólogo , Nucleolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...