Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Orthop Surg ; 16(8): 2052-2065, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952050

RESUMEN

BACKGROUND: The reaserch of artificial intelligence (AI) model for predicting spinal refracture is limited to bone mineral density, X-ray and some conventional laboratory indicators, which has its own limitations. Besides, it lacks specific indicators related to osteoporosis and imaging factors that can better reflect bone quality, such as computed tomography (CT). OBJECTIVE: To construct a novel predicting model based on bone turn-over markers and CT to identify patients who were more inclined to suffer spine refracture. METHODS: CT images and clinical information of 383 patients (training set = 240 cases of osteoporotic vertebral compression fractures (OVCF), validation set = 63, test set = 80) were retrospectively collected from January 2015 to October 2022 at three medical centers. The U-net model was adopted to automatically segment ROI. Three-dimensional (3D) cropping of all spine regions was used to achieve the final ROI regions including 3D_Full and 3D_RoiOnly. We used the Densenet 121-3D model to model the cropped region and simultaneously build a T-NIPT prediction model. Diagnostics of deep learning models were assessed by constructing ROC curves. We generated calibration curves to assess the calibration performance. Additionally, decision curve analysis (DCA) was used to assess the clinical utility of the predictive models. RESULTS: The performance of the test model is comparable to its performance on the training set (dice coefficients of 0.798, an mIOU of 0.755, an SA of 0.767, and an OS of 0.017). Univariable and multivariable analysis indicate that T_P1NT was an independent risk factor for refracture. The performance of predicting refractures in different ROI regions showed that 3D_Full model exhibits the highest calibration performance, with a Hosmer-Lemeshow goodness-of-fit (HL) test statistic exceeding 0.05. The analysis of the training and test sets showed that the 3D_Full model, which integrates clinical and deep learning results, demonstrated superior performance with significant improvement (p-value < 0.05) compared to using clinical features independently or using only 3D_RoiOnly. CONCLUSION: T_P1NT was an independent risk factor of refracture. Our 3D-FULL model showed better performance in predicting high-risk population of spine refracture than other models and junior doctors do. This model can be applicable to real-world translation due to its automatic segmentation and detection.


Asunto(s)
Aprendizaje Profundo , Fracturas por Compresión , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Tomografía Computarizada por Rayos X , Humanos , Femenino , Fracturas de la Columna Vertebral/diagnóstico por imagen , Masculino , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas por Compresión/diagnóstico por imagen , Recurrencia , Anciano de 80 o más Años , Imagenología Tridimensional
2.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669183

RESUMEN

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Asunto(s)
Proteínas Portadoras , Polaridad Celular , Proteínas de la Membrana , Columna Vertebral , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Humanos , Ratones , Polaridad Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Escoliosis/genética , Escoliosis/congénito , Escoliosis/metabolismo , Vía de Señalización Wnt/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Femenino
3.
J Clin Oncol ; 42(18): 2126-2131, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38574304

RESUMEN

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.We previously reported superior symptom control of electronic patient-reported outcome (ePRO)-based symptom management after lung cancer surgery for up to 1 month postdischarge. Here, we present the long-term results (1-12 months) of this multicenter, randomized trial, where patients were assigned 1:1 to receive postoperative ePRO-based symptom management or usual care daily postsurgery, twice weekly postdischarge until 1 month, and at 3, 6, 9, and 12 months postdischarge. Long-term patient-reported outcomes were assessed with MD Anderson Symptom Inventory-Lung Cancer module. Per-protocol analyses were performed with 55 patients in the ePRO group and 57 in the usual care group. At 12 months postdischarge, the ePRO group reported significantly fewer symptom threshold events (any of the five target symptom scored ≥4; median [IQR], 0 [0-0] v 0 [0-1]; P = .040) than the usual care group. From 1 to 12 months postdischarge, the ePRO group consistently reported significantly lower composite scores for physical interference (estimate, -0.86 [95% CI, -1.32 to -0.39]) and affective interference (estimate, -0.70 [95% CI, -1.14 to -0.26]). Early intensive ePRO-based symptom management after lung cancer surgery reduced symptom burden and improved functional status for up to 1 year postdischarge, supporting its integration into standard care.


Asunto(s)
Neoplasias Pulmonares , Medición de Resultados Informados por el Paciente , Humanos , Neoplasias Pulmonares/cirugía , Femenino , Masculino , Anciano , Persona de Mediana Edad , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA