Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673159

RESUMEN

In this study, a detailed structural characterization of epitaxial La0.6Sr0.4CoO3-δ (LSC) films grown in (100), (110), and (111) orientations was conducted. LSC is a model air electrode material in solid oxide fuel and electrolysis cells and understanding the correlation of bulk structure and catalytic activity is essential for the design of future electrode materials. Thin films were grown on single crystals of the perovskite material La0.95Sr0.05Ga0.95Mg0.05O3-δ cut in three different directions. This enabled an examination of structural details at the atomic scale for a realistic material combination in solid oxide cells. The investigation involved the application of atomic force microscopy, X-ray diffraction, and high-resolution transmission electron microscopy to explore the distinct properties of these thin films. Interestingly, ordering phenomena in both cationic as well as anionic sublattices were found, despite the fact that the thin films were never at higher temperatures than 600 °C. Cationic ordering was found in spherical precipitates, whereas the ordering of oxygen vacancies led to the partial transition to brownmillerite in all three orientations. Our results indicate a very high oxygen vacancy concentration in all three thin films. Lattice strains in-plane and out-of-plane was measured, and its implications for the structural modifications are discussed.

2.
Plants (Basel) ; 13(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38498546

RESUMEN

Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.

3.
Plant Cell Environ ; 47(5): 1452-1470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233741

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.


Asunto(s)
MicroARNs , Oryza , MicroARNs/genética , MicroARNs/metabolismo , Cadmio/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Angew Chem Int Ed Engl ; 63(8): e202317343, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38117671

RESUMEN

The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface-induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA-15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched-row structure in softer Pt nanoparticles, which was identified by microscopic and surface-sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt-CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.

5.
Nat Commun ; 14(1): 8387, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104109

RESUMEN

Tailoring vacancies is a feasible way to improve the mechanical properties of ceramics. However, high concentrations of vacancies usually compromise the strength (or hardness). We show that a high elasticity and flexural strength could be achieved simultaneously using a nitride superlattice architecture with disordered anion vacancies up to 50%. Enhanced mechanical properties primarily result from a distinctive deformation mechanism in superlattice ceramics, i.e., unit-cell disturbances. Such a disturbance substantially relieves local high-stress concentration, thus enhancing deformability. No dislocation activity involved also rationalizes its high strength. The work renders a unique understanding of the deformation and strengthening/toughening mechanism in nitride ceramics.

6.
J Mater Chem A Mater ; 11(44): 24072-24088, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014361

RESUMEN

The level of oxygen deficiency δ in high-voltage spinels of the composition LiNi0.5Mn1.5O4-δ (LNMO) significantly influences the thermodynamic and kinetic properties of the material, ultimately affecting the cell performance of the corresponding lithium-ion batteries. This study presents a comprehensive defect chemical analysis of LNMO thin films with oxygen vacancy concentrations of 2.4% and 0.53%, focusing particularly on the oxygen vacancy regime around 4 V versus Li+/Li. A set of electrochemical properties is extracted from impedance measurements as a function of state-of-charge for the full tetrahedral-site regime (3.8 to 4.9 V versus Li+/Li). A defect chemical model (Brouwer diagram) is derived from the data, providing a coherent explanation for all important trends of the electrochemical properties and charge curve. Highly resolved chemical capacitance measurements allow a refining of the defect model for the oxygen vacancy regime, showing that a high level of oxygen deficiency not only impacts the amount of redox active Mn3+/4+, but also promotes the trapping of electrons in proximity to an oxygen vacancy. The resulting stabilisation of Mn3+ thereby mitigates the voltage reduction in the oxygen vacancy regime. These findings offer valuable insights into the complex influence of oxygen deficiency on the performance of lithium-ion batteries based on LNMO.

7.
Plant Cell Rep ; 42(12): 2023-2038, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819387

RESUMEN

KEY MESSAGE: OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.


Asunto(s)
Hemípteros , Oryza , Animales , Transcriptoma , Oryza/genética , Oryza/metabolismo , Regulación de la Expresión Génica , Metaboloma , Hemípteros/fisiología , Regulación de la Expresión Génica de las Plantas
8.
Chem Mater ; 35(13): 5135-5149, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37456594

RESUMEN

Spinels of the general formula Li2-δM2O4 are an essential class of cathode materials for Li-ion batteries, and their optimization in terms of electrode potential, accessible capacity, and charge/discharge kinetics relies on an accurate understanding of the underlying solid-state mass and charge transport processes. In this work, we report a comprehensive impedance study of sputter-deposited epitaxial Li2-δMn2O4 thin films as a function of state-of-charge for almost the entire tetrahedral-site regime (1 ≤ δ ≤ 1.9) and provide a complete set of electrochemical properties, consisting of the charge-transfer resistance, ionic conductivity, volume-specific chemical capacitance, and chemical diffusivity. The obtained properties vary by up to three orders of magnitude and provide essential insights into the point defect concentration dependences of the overall electrode potential. We introduce a defect chemical model based on simple concentration dependences of the Li chemical potential, considering the tetrahedral and octahedral lattice site restrictions defined by the spinel crystal structure. The proposed model is in excellent qualitative and quantitative agreement with the experimental data, excluding the two-phase regime around 4.15 V. It can easily be adapted for other transition metal stoichiometries and doping states and is thus applicable to the defect chemical analysis of all spinel-type cathode materials.

9.
ACS Appl Energy Mater ; 6(12): 6712-6720, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388294

RESUMEN

The oxygen exchange kinetics and the surface chemistry of epitaxially grown, dense La0.6Sr0.4CoO3-δ (LSC) thin films in three different orientations, (001), (110), and (111), were investigated by means of in situ impedance spectroscopy during pulsed laser deposition (i-PLD) and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). i-PLD measurements showed that pristine LSC surfaces exhibit very fast surface exchange kinetics but revealed no significant differences between the specific orientations. However, as soon as the surfaces were in contact with acidic, gaseous impurities, such as S-containing compounds in nominally pure measurement atmospheres, NAP-XPS measurements revealed that the (001) orientation is substantially more susceptible to the formation of sulfate adsorbates and a concomitant performance decrease. This result is further substantiated by a stronger increase of the work function on (001)-oriented LSC surfaces upon sulfate adsorbate formation and by a faster performance degradation of these surfaces in ex situ measurement setups. This phenomenon has potentially gone unnoticed in the discussion of the interplay between the crystal orientation and the oxygen exchange kinetics and might have far-reaching implications for real solid oxide cell electrodes, where porous materials exhibit a wide variety of differently oriented and reconstructed surfaces.

10.
Phys Chem Chem Phys ; 25(1): 142-153, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36476841

RESUMEN

La0.6Sr0.4FeO3-δ (LSF) electrodes were grown on different electrolyte substrates by pulsed laser deposition (PLD) and their oxygen exchange reaction (OER) resistance was tracked in real-time by in situ PLD impedance spectroscopy (i-PLD) inside the PLD chamber. This enables measurements on pristine surfaces free from any contaminations and the direct observation of thickness dependent properties. As substrates, yttria-stabilized zirconia single crystals (YSZ) were used for polycrystalline LSF growth and La0.95Sr0.05Ga0.95Mg0.05O3-δ (LSGM) single crystals or YSZ single crystals with a 5 nm buffer-layer of Gd0.2Ce0.8O2-δ for epitaxial LSF film growth. While polycrystalline LSF electrodes show a constant OER resistance in a broad thickness range, epitaxially grown LSF electrodes exhibit a continuous and strong increase of the OER resistance with film thickness until ≈60 nm. In addition, the activation energy of the OER resistance increases by 0.23 eV compared to polycrystalline LSF. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) measurements reveal an increasing contraction of the out-of-plane lattice parameter in the epitaxial LSF electrodes over electrode thickness. Defect thermodynamic simulations suggest that the decrease of the LSF unit cell volume is accompanied by a lowering of the oxygen vacancy concentration, explaining both the resistive increase and the increased activation energy.

11.
J Phys Chem C Nanomater Interfaces ; 126(17): 7696-7703, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558823

RESUMEN

In BiFeO3 (BFO), Bi2O3 (BO) is a known secondary phase, which can appear under certain growth conditions. However, BO is not just an unwanted parasitic phase but can be used to create the super-tetragonal BFO phase in films on substrates, which would otherwise grow in the regular rhombohedral phase (R-phase). The super-tetragonal BFO phase has the advantage of a much larger ferroelectric polarization of 130-150 µC/cm2, which is around 1.5 times the value of the rhombohedral phase with 80-100 µC/cm2. Here, we report that the solubility of Ca, which is a common dopant of bismuth ferrite materials to tune their properties, is significantly lower in the secondary BO phase than in the observed R-phase BFO. Starting from the film growth, this leads to completely different Ca concentrations in the two phases. We show this with advanced analytical transmission electron microscopy techniques and confirm the experimental results with density functional theory (DFT) calculations. At the film's fabrication temperature, caused by different solubilities, about 50 times higher Ca concentration is expected in the BFO phase than in the secondary one. Depending on the cooling rate after fabrication, this can further increase since a larger Ca concentration difference is expected at lower temperatures. When fabricating functional devices using Ca doping and the secondary BO phase, the difference in solubility must be considered because, depending on the ratio of the BO phase, the Ca concentration in the BFO phase can become much higher than intended. This can be critical for the intended device functionality because the Ca concentration strongly influences and modifies the BFO properties.

12.
ACS Appl Electron Mater ; 3(10): 4498-4508, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723187

RESUMEN

The interaction of oxygen vacancies and ferroelectric domain walls is of great scientific interest because it leads to different domain-structure behaviors. Here, we use high-resolution scanning transmission electron microscopy to study the ferroelectric domain structure and oxygen-vacancy ordering in a compressively strained Bi0.9Ca0.1FeO3-δ thin film. It was found that atomic plates, in which agglomerated oxygen vacancies are ordered, appear without any periodicity between the plates in out-of-plane and in-plane orientation. The oxygen non-stoichiometry with δ ≈ 1 in FeO2-δ planes is identical in both orientations and shows no preference. Within the plates, the oxygen vacancies form 1D channels in a pseudocubic [010] direction with a high number of vacancies that alternate with oxygen columns with few vacancies. These plates of oxygen vacancies always coincide with charged domain walls in a tail-to-tail configuration. Defects such as ordered oxygen vacancies are thereby known to lead to a pinning effect of the ferroelectric domain walls (causing application-critical aspects, such as fatigue mechanisms and countering of retention failure) and to have a critical influence on the domain-wall conductivity. Thus, intentional oxygen vacancy defect engineering could be useful for the design of multiferroic devices with advanced functionality.

13.
Nanoscale ; 13(16): 7783-7791, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33871530

RESUMEN

The alternative VO2/TiO2 nanostructure is a potential candidate for application in optical or electrical devices. A promising and straightforward route to form tunable alternative VO2/TiO2 nanostructure is in high demand. Herein, we demonstrate that the VO2/TiO2 nanostructure could be self-assembled from the VO2 film/TiO2 substrate via directional cationic migration, characterizing Ti-rich nano-lamellas with nanoscale spacing along the c-axis. Through aberration-corrected high-resolution transmission electron microscopy, it has been shown that the realization of directional cationic migration is assisted by the interstitial position inside the VO2 lattice. Non-equilibrium cationic diffusion could even retain these interstitial atoms in the form of incoherent strain lines, which affect the local electronic structure as validated by theoretical calculation. Due to Ti-rich nano-lamellas and incoherent strain lines, the phase transition temperature decreased (∼10 °C). The idea of tailoring the elemental distribution by directional cationic diffusion significantly broadens the functional application of VO2 films.

14.
ACS Appl Mater Interfaces ; 12(10): 12264-12274, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32058684

RESUMEN

Segregation is a crucial phenomenon, which has to be considered in functional material design. Segregation processes in perovskite oxides have been the subject of ongoing scientific interest, since they can lead to a modification of properties and a loss of functionality. Many studies in oxide thin films have focused on segregation toward the surface using a variety of surface-sensitive analysis techniques. In contrast, here we report a Ca segregation toward an in-plane compressively strained heterostructure interface in a Ca- and Mn-codoped bismuth ferrite film. We are using advanced transmission electron microscopy techniques, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. Ca segregation is found to trigger atomic and electronic structure changes at the interface. This includes the reduction of the interface strain according to the Ca concentration gradient, interplanar spacing variations, and oxygen vacancies at the interface. The experimental results are supported by DFT calculations, which explore two segregation scenarios, i.e., one without oxygen vacancies and Fe oxidation from 3+ to 4+ and one with vacancies for charge compensation. Comparison with electron energy loss spectroscopy (EELS) measurements confirms the second segregation scenario with vacancy formation. The findings contribute to the understanding of segregation and indicate promising effects of a Ca-rich buffer layer in this heterostructure system.

15.
ACS Nano ; 13(5): 5655-5661, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30977633

RESUMEN

A ferromagnetic barrier thinner than the coherence length in high-temperature superconductors is realized in the multilayers of YBa2Cu3O7-δ and La0.67Ca0.33MnO3. We used epitaxial growth of YBCO on ⟨110⟩ SrTiO3 substrates by pulsed laser deposition to prepare thin superconducting films with copper oxide planes oriented at an angle to the substrate surface. Subsequent deposition of LCMO and finally a second YBCO layer produces a superconductor/ferromagnet/superconductor trilayer containing an ultrathin ferromagnetic barrier with sophisticated geometry at which the long axis of coherence length ovoid of YBCO is pointing across the LCMO ferromagnetic layer. A detailed characterization of this structure is achieved using high-resolution electron microscopy.

16.
Nano Lett ; 18(12): 7742-7748, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30407834

RESUMEN

Photostriction, optical stimulus driven mechanical deformation in materials, provides a solution toward next-generation technology. Here, the giant photostriction (∼2% change of lattice) of epitaxial strontium iridate (SrIrO3) films under illumination at room temperature is revealed via power-dependent Raman scattering, which is significantly larger as compared to conventional inorganic materials. The time scale and mechanism of this giant photostriction in SrIrO3 are further studied through time-resolved transient reflectivity measurements. The main mechanism is determined to be the electron-phonon coupling. In addition, we find that such an exotic behavior happens within few picoseconds and remains up to 107 cyclic on/off operations. The observation of giant photostriction in SrIrO3 films with superior endurance promises the advance of shape responsive solids that are sensitive to environmental stimuli, which could be widely utilized for multifunctional optoelectronics and optomechanical devices.

17.
Nat Commun ; 9(1): 3761, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206224

RESUMEN

The authors became aware of a mistake in the original version of this Article. Specifically, where discussing the Curie temperature of the amorphous phase, Tc, in the 'Thermal characterization' section of the Results and in Fig. 2, the authors should have been discussing the Curie temperature of the magnetic crystalline phases T'c. While the Curie temperature of the glass is lower than previously reported, this error does not affect the original discussion or conclusions of the Article. The authors apologize for the confusion caused by this mistake. In addition to this, there were errors in some of the equations in the main text, and the glass composition. A number of changes have been made in both the PDF and HTML versions of the Article to reflect these errors. A full list of these changes is available online.

18.
Nat Commun ; 9(1): 1333, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626189

RESUMEN

The large plasticity observed in newly developed monolithic bulk metallic glasses under quasi-static compression raises a question about the contribution of atomic scale effects. Here, nanocrystals on the order of 1-1.5 nm in size are observed within an Fe-based bulk metallic glass using aberration-corrected high-resolution transmission electron microscopy (HRTEM). The accumulation of nanocrystals is linked to the presence of hard and soft zones, which is connected to the micro-scale hardness and elastic modulus confirmed by nanoindentation. Furthermore, we performed systematic simulations of HRTEM images at varying sample thicknesses, and established a theoretical model for the estimation of the shear transformation zone size. The findings suggest that the main mechanism behind the formation of softer regions are the homogenously dispersed nanocrystals, which are responsible for the start and stop mechanism of shear transformation zones and hence, play a key role in the enhancement of mechanical properties.

19.
Nat Commun ; 9(1): 946, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29507370

RESUMEN

Oxygen contamination is a problem which inevitably occurs during severe plastic deformation of metallic powders by exposure to air. Although this contamination can change the morphology and properties of the consolidated materials, there is a lack of detailed information about the behavior of oxygen in nanocrystalline alloys. In this study, aberration-corrected high-resolution transmission electron microscopy and associated techniques are used to investigate the behavior of oxygen during in situ heating of highly strained Cu-Fe alloys. Contrary to expectations, oxide formation occurs prior to the decomposition of the metastable Cu-Fe solid solution. This oxide formation commences at relatively low temperatures, generating nanosized clusters of firstly CuO and later Fe2O3. The orientation relationship between these clusters and the matrix differs from that observed in conventional steels. These findings provide a direct observation of oxide formation in single-phase Cu-Fe composites and offer a pathway for the design of nanocrystalline materials strengthened by oxide dispersions.

20.
J Mater Sci ; 52(16): 9872-9883, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32025046

RESUMEN

Nanostructured molybdenum-copper composites have been produced through severe plastic deformation of liquid-metal infiltrated Cu30Mo70 and Cu50Mo50 (wt%) starting materials. Processing was carried out using high-pressure torsion at room temperature with no subsequent sintering treatment, producing a porosity-free, ultrafine-grained composite. Extensive deformation of the Cu50Mo50 composite via two-step high-pressure torsion produced equiaxed nanoscale grains of Mo and Cu with a grain size of 10-15 nm. Identical treatment of Cu30Mo70 produced a ultrafine, lamellar structure, comprised of Cu and Mo layers with thicknesses of ∼ 5 and ∼ 10 - 20 nm , respectively, and an interlamellar spacing of 9 nm. This microstructure differs substantially from that of HPT-deformed Cu-Cr and Cu-W composites, in which the lamellar microstructure breaks down at high strains. The ultrafine-grained structure and absence of porosity resulted in composites with Vickers hardness values of 600 for Cu30Mo70 and 475 for Cu50Mo50. The ability to produce Cu30Mo70 nanocomposites with a combination of high-strength, and a fine, oriented microstructure should be of interest for thermoelectric applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...