Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Sci Rep ; 14(1): 20417, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223229

RESUMEN

Currently, the relationship between axial rotation of the vertebrae and bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) remains controversial. The aim of this study is to quantitatively assess the effect of vertebral rotation on volumetric bone mineral density (v-BMD) and areal bone mineral density (a-BMD), further to propose the corrected strategies. To achieve this, a phantom, which was rotated from 0° to 25° in 5° increments, was utilized. Bone mineral content (BMC), a-BMD, v-BMD, and projected area (p-AREA) were measured. The Kruskal-Wallis non-parametric test or one-way ANOVA was used to examine the differences in variables between the different groups. The Pearson and Spearman correlation was used to test the relationships between quantitative parameters and rotated angles. Linear regression analysis was used to evaluate the relationship between angles and quantitative parameters. The findings indicate that, as the angle increased, a-BMD and v-BMD decreased (P < 0.001) , and the p-AREA increased (P < 0.001), but the BMC stays constant. The rotated angle was negative correlated (r = - 0.925, P < 0.001) with a-BMD and v-BMD (r = - 0.880, P < 0.001), positive (r = 0.930, P = < 0.001) correlated with p-AREA. The linear regression analysis showed that a-BMD = 0.808-0.01 × Angle and v-BMD = 151.808-1.588 × Angle. This study showed that, axial rotation might lead to a lower measured for a-BMD and v-BMD, it should be modified. This gives clinicians some insights into how to deal with osteoporosis in scoliosis patients. It's essential for clinicians to incorporate these findings into their diagnostic processes to prevent potential misdiagnosis and over-treatment of osteoporosis.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Vértebras Lumbares , Tomografía Computarizada por Rayos X , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiología , Tomografía Computarizada por Rayos X/métodos , Rotación , Fantasmas de Imagen
2.
Respir Med ; 234: 107814, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307479

RESUMEN

BACKGROUND AND OBJECTIVE: Acute coronary syndrome (ACS), heart failure (HF) and obstructive sleep apnea (OSA) often overlap and interact, the impact of OSA on ACS patients with HF remains unclear. The study sought to comprehensively evaluate the effects of the interaction between OSA and HF on long-term cardiovascular outcomes in ACS patients. METHODS: Between June 2015 and January 2020, patients hospitalized for ACS were prospectively enrolled and underwent portable sleep monitoring after clinically stabilization. OSA was defined as an apnea hypopnea index ≥15 events/h. HF was defined using medical records. The primary endpoint was major adverse cardiovascular and cerebrovascular event (MACCE), including death, myocardial infarction, stroke, ischemia-driven revascularization, and hospitalization for unstable angina. RESULTS: Among all 1927 included patients, 214 (11.1 %) had HF, and 1014 (52.6 %) had OSA. For 2.9 years (1.5, 3.6 years) follow-up, OSA was independently associated with the risk of MACCE in HF patients (adjusted hazard ratio [HR], 2.11; 95%CI, 1.16-3.84; P = 0.014), but not in those without HF (adjusted HR, 1.15; 95%CI, 0.92-1.45; P = 0.228). Further analysis showed OSA exerted more prognostic effect in HF patients with preserved eject fraction (adjusted HR, 2.45; 95 % CI, 1.11-5.41; P = 0.027) than those with reduced eject fraction (adjusted HR, 1.62; 95 % CI, 0.63-4.20; P = 0.319). CONCLUSIONS: In the settings of ACS, OSA was independently associated with poor prognosis in patients with concomitant HF especially those with persevered ejection fraction. Screening and treatment for OSA are highly recommended in ACS patients with HF. CLINICAL TRIAL REGISTRATION: URL: www.clinicaltrails.gov; Unique Identifier: NCT03362385.

3.
Front Bioeng Biotechnol ; 12: 1431527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239257

RESUMEN

Background: Manipulative treatment can effectively improve knee pain and function, but no previous studies have shown that lumbar osteopathic manipulative treatment can improve knee symptoms. To explore the influence of lumbar manipulation on KOA and analyze its principlerelationship between coronal position of lumbar spine and KOA. Methods: Patients were divided into OMT group and DT group according to treatment. WOMAC scores were compared between the two groups, and X-ray examinations before and after treatment were performed in OMT group to analyze the imaging changes. Results: Both OMT group and DT group showed significant improvement in WOMAC score after treatment, and the improvement in OMT group was better than that in DT group. After OMT treatment, cTMI(P = 0.034), mL-SOD (P < 0.001), mΔL-KOD (P = 0.001), LL (P = 0.036), and FTA(P = 0.026) were significantly changed. Conclusion: Compared with drug therapy, lumbar manipulation can better improve WOMAC scores in KOA patients. It relives symptoms by loosening muscles and correcting small joint disorders to improve local knee alignment.

4.
Microsyst Nanoeng ; 10(1): 122, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218925

RESUMEN

Wireless sensor nodes (WSNs) play an important role in many fields, including environmental monitoring. However, unattended WSNs face challenges in consuming power continuously even in the absence of useful information, which makes energy supply the bottleneck of WSNs. Here, we realized zero-power infrared switches, which consist of a metasurface and two-phase microfluidic flow. The metasurface can recognize the infrared signal from the target and convert it into heat, which triggers the two-phase microfluidic flow switch. As the target is not present, the switch is turned off. The graphene/MoS2/graphene 2D material heterostructure (thickness <2 nm) demonstrates an exceptionally high thermal resistance of 4.2 K/W due to strong phonon scattering and reduces the heat flow from the metasurface to the supporting substrate, significantly increasing the device sensitivity (the displacement of the two-phase microfluidic flow increases from ~1500 to ~3000 µm). The infrared switch with a pair of symmetric two-phase microfluidic flows can avoid spurious triggering resulting from environmental temperature changes. We realized WSNs with near-zero standby power consumption by integrating the infrared switch, sensors, and wireless communication module. When the target infrared signal appears, the WSNs are woken and show superb visual/auditory sensing performance. This work provides a novel approach for greatly lengthening the lifespan of unattended WSNs.

5.
J Colloid Interface Sci ; 677(Pt A): 1029-1036, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39134077

RESUMEN

Aqueous zinc ion batteries (AZIBs) have attracted much attention for their safety, low cost and high theoretical capacity. Nevertheless, Zn dendrites and the adverse reactions such as corrosion, hydrogen evolution and passivation on the anode affect the cycle life and stability of AZIBs. Herein, superabsorbent starch (SS) was employed on Zn foil to form an artificial interface protection layer, which inhibited the formation of dendrites by guiding the uniform deposition of Zn2+. SS with a large amount of oxygen-containing functional group is superabsorbent, which can attract the active water around the hydrated Zn2+, promoting the desolvation process of the hydrated Zn2+ and significantly inhibiting the occurrence of hydrogen evolution reaction. In addition, the inherent pore structure of the SS artificial interfacial layer can induce uniform nucleation of Zn2+ and inhibit the dendrites growth. Moreover, compared to bare Zn//MnO2 cell (44.1 %), the capacity retention of Zn@SS//MnO2 cell remained as high as 87.8 % after 1000 cycles at 1.5 A g-1. The simple method provided a new method for the rapid development of AZIBs.

6.
Rapid Commun Mass Spectrom ; 38(18): e9857, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022839

RESUMEN

RATIONAL: Aconiti Lateralis Radix Praeparata (AC) is a traditional Chinese medicine with a long history of use. However, the current research on the material basis of AC and its processed products is still not comprehensive, especially the changes in lipo-diterpenoid alkaloids (LDAs) that can be hydrolyzed into diester-diterpenoid alkaloids in AC before and after processing. This study aimed to provide material basis guidance for the clinical use of AC and its processed products by comprehensively analyzing the changes in substances between AC and its processed products. METHODS: An ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) approach was optimized to chemical profiling. The MS data were processed using molecular networking combined with the in-house library database to fast characterize the compounds. Multivariate statistical methods were adopted to determine the dissimilarities of components in AC and its processed products. RESULTS: A total of 310 compounds were tentatively identified from AC, including 109 potential new alkaloids, of which 98 were potential novel LPAs. A metabolomics approach was applied to find the characteristic marker components. As a result, 52 potential chemical markers were selected to distinguish the AC samples of different extraction methods and 42 potential chemical markers for differentiating between AC and its processed products were selected. CONCLUSION: The results indicate that UHPLC/Q-TOF-MS/MS and Global Natural Products Social Molecular Networking coupled with multivariate analysis strategies was a powerful tool to rapidly identify and screen the chemical markers of alkaloids between the AC samples and its processed products. These results also indicate that the toxicity of water extracts of AC and its processed products were decreased. This research not only guides the clinical safe use of AC and its processed products, but also extends the application of the molecular networking strategy in traditional herbal medicine.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/análisis , Alcaloides/química , Espectrometría de Masas en Tándem/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Aconitum/química , Análisis Multivariante , Humanos
7.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000964

RESUMEN

Predicting the health status of lithium-ion batteries is crucial for ensuring safety. The prediction process typically requires inputting multiple time series, which exhibit temporal dependencies. Existing methods for health status prediction fail to uncover both coarse-grained and fine-grained temporal dependencies between these series. Coarse-grained analysis often overlooks minor fluctuations in the data, while fine-grained analysis can be overly complex and prone to overfitting, negatively impacting the accuracy of battery health predictions. To address these issues, this study developed a Hybrid-grained Evolving Aware Graph (HEAG) model for enhanced prediction of lithium-ion battery health. In this approach, the Fine-grained Dependency Graph (FDG) helps us model the dependencies between different sequences at individual time points, and the Coarse-grained Dependency Graph (CDG) is used for capturing the patterns and magnitudes of changes across time series. The effectiveness of the proposed method was evaluated using two datasets. Experimental results demonstrate that our approach outperforms all baseline methods, and the efficacy of each component within the HEAG model is validated through the ablation study.

8.
Fitoterapia ; 177: 106136, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053744

RESUMEN

Global Natural Products Social (GNPS) molecular networking platform was applied to discovery the undescribed compounds from the common marine fungi Aspergillus versicolor CGF9-1-2, ultimately resulting in isolation of four new polyketides, decumbenone E (1), decumbenone F (2), 2'-epi-8-O-methylnidurufin (6), (-)-phomoindene A (7), one new nucleoside, 3-methyl-9-(2-methylbutene)-xanthine (8), and five known analogues. Their structures were elucidated based on 1D/2D NMR spectroscopic and HRESIMS data analyses, meanwhile, the absolute configurations of new compounds were established based on the X-ray crystallographic experiments, as well as the electronic circular dichroism (ECD) analysis. All compounds were predicted pharmaceutical chemistry with ten commonly disease-related proteins by molecular docking. In addition, all compounds against TDP1 were performed in vitro, which was consistent with the docking result, and compound 6 shown a weak inhibitory activity.


Asunto(s)
Antozoos , Aspergillus , Simulación del Acoplamiento Molecular , Aspergillus/química , Antozoos/microbiología , Antozoos/química , Estructura Molecular , Animales , Policétidos/aislamiento & purificación , Policétidos/farmacología , Policétidos/química , China , Productos Biológicos/farmacología , Productos Biológicos/aislamiento & purificación , Productos Biológicos/química , Nucleósidos/aislamiento & purificación , Nucleósidos/química , Nucleósidos/farmacología
9.
J Agric Food Chem ; 72(23): 13297-13307, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830127

RESUMEN

2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Thymelaeaceae/enzimología , Thymelaeaceae/química , Thymelaeaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Madera/química , Especificidad por Sustrato , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Metilación , Flavonoides
10.
Skeletal Radiol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880791

RESUMEN

OBJECTIVE: To assess the accuracy of an artificial intelligence (AI) software (BoneMetrics, Gleamer) in performing automated measurements on weight-bearing forefoot and lateral foot radiographs. METHODS: Consecutive forefoot and lateral foot radiographs were retrospectively collected from three imaging institutions. Two senior musculoskeletal radiologists independently annotated key points to measure the hallux valgus, first-second metatarsal, and first-fifth metatarsal angles on forefoot radiographs and the talus-first metatarsal, medial arch, and calcaneus inclination angles on lateral foot radiographs. The ground truth was defined as the mean of their measurements. Statistical analysis included mean absolute error (MAE), bias assessed with Bland-Altman analysis between the ground truth and AI prediction, and intraclass coefficient (ICC) between the manual ratings. RESULTS: Eighty forefoot radiographs were included (53 ± 17 years, 50 women), and 26 were excluded. Ninety-seven lateral foot radiographs were included (51 ± 20 years, 46 women), and 21 were excluded. MAE for the hallux valgus, first-second metatarsal, and first-fifth metatarsal angles on forefoot radiographs were respectively 1.2° (95% CI [1; 1.4], bias = - 0.04°, ICC = 0.98), 0.7° (95% CI [0.6; 0.9], bias = - 0.19°, ICC = 0.91) and 0.9° (95% CI [0.7; 1.1], bias = 0.44°, ICC = 0.96). MAE for the talus-first, medial arch, and calcaneal inclination angles on the lateral foot radiographs were respectively 3.9° (95% CI [3.4; 4.5], bias = 0.61° ICC = 0.88), 1.5° (95% CI [1.2; 1.8], bias = - 0.18°, ICC = 0.95) and 1° (95% CI [0.8; 1.2], bias = 0.74°, ICC = 0.99). Bias and MAE between the ground truth and the AI prediction were low across all measurements. ICC between the two manual ratings was excellent, except for the talus-first metatarsal angle. CONCLUSION: AI demonstrated potential for accurate and automated measurements on weight-bearing forefoot and lateral foot radiographs.

11.
Sci Total Environ ; 945: 174066, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897469

RESUMEN

Double high pollution (DHP) of ozone (O3) and fine particulate matter (PM2.5) has frequently been observed in China in recent years. Numerous studies have speculated that DHP might be related to nitrous acid (HONO), but the chemical mechanism involved remains unclear. Field observation results of DHP in Shanghai indicate that the high concentration of HONO produced by nitrogen dioxide (NO2) heterogeneous reactions under conditions of high temperature and high humidity promotes an increase in PM2.5 and O3 concentrations. The box model combined with field observations to reconstruct pollution events indicates that HONO photolysis generates abundant hydroxyl (OH) radicals that rapidly oxidize volatile organic compounds (VOCs), which in turn accelerates the ROx (OH, hydroperoxyl (HO2), and organic peroxy (RO2) radicals) cycle and causes the accumulation of O3. This elevated O3 along with high concentrations of HONO, produces particulate nitrate (pNO3) by encouraging the NO2 + OH reaction. This process strengthens the chemical coupling between O3 and PM2.5, which can exacerbate the DHP of O3 and PM2.5. Sensitivity analysis of pNO3/O3-NOx-VOCs suggests that under nitrogen oxides (NOx = NO + NO2) reduction conditions, simultaneous control of pNO3 and O3 can be expected to be successfully achieved through emission reduction of alkanes and oxygenated VOCs (OVOCs). Therefore, the present research will facilitate the design of appropriate PM2.5 and O3 control strategies for high HONO concentration conditions, and thus alleviate the current stresses of air pollution.

12.
J Hazard Mater ; 473: 134618, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761764

RESUMEN

The widespread application of antibiotics and plastic films in agriculture has led to new characteristics of soil pollution. The impacts of combined contamination of microplastics and antibiotics on plant growth and rhizosphere soil bacterial community and metabolisms are still unclear. We conducted a pot experiment to investigate the effects of polyethylene (0.2%) and norfloxacin/doxycycline (5 mg kg-1), as well as the combination of polyethylene and antibiotics, on the growth, rhizosphere soil bacterial community and metabolisms of wheat and maize seedlings. The results showed that combined contamination caused more serious damage to plant growth than individual contamination, and aggravated root oxidative stress responses. The diversity and structure of soil bacterial community were not markedly altered, but the composition of the bacterial community, soil metabolisms and metabolic pathways were altered. The co-occurrence network analysis indicated that combined contamination may inhibit the growth of wheat and maize seedings by simplifying the interrelationships between soil bacteria and metabolites, and altering the relative abundance of specific bacteria genera (e.g. Kosakonia and Sphingomonas) and soil metabolites (including sugars, organic acids and amino acids). The results help to elucidate the potential mechanisms of phytotoxicity of the combination of microplastic and antibiotics.


Asunto(s)
Antibacterianos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Antibacterianos/farmacología , Antibacterianos/toxicidad , Microplásticos/toxicidad , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Norfloxacino/farmacología , Norfloxacino/toxicidad , Polietileno/toxicidad
13.
ACS Appl Mater Interfaces ; 16(22): 28771-28779, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795117

RESUMEN

Blue perovskite light-emitting diodes (LEDs) have emerged as promising candidates for full-color display and lighting applications. However, the fabrication of blue-emitting perovskite films typically requires an inert environment, leading to increased complexity and cost in the manufacturing process, which is undesirable for applications of perovskite LEDs. Herein, we report a strategy to fabricate bright blue-emitting perovskite films in ambient air by incorporating phosphonic chlorides in a perovskite precursor solution. We used two different phosphonic chlorides, diphenylphosphonic chloride (DPPC) and phenylphosphonic dichloride (PPDC), and comparatively studied their effects on the properties of perovskite films and the blue LEDs. It is found that PPDC possesses a stronger chlorination ability due to higher hydrolysis reactivity; meanwhile, it has a stronger interaction with the perovskite compared to DPPC, resulting in an improved film quality and enhanced blue emission with a photoluminescence quantum yield of 45%, which represents the record value for the air-processed blue perovskite films. Blue perovskite LEDs are fabricated, and the emission wavelengths are effectively tuned by controlling the concentration of phosphonic chlorides. Benefiting from the optimized perovskite films with reduced nonradiative recombination and promoted charge injection and transport, the PPDC-derived blue perovskite LEDs exhibit improved performance with an external quantum efficiency of 3.3% and 1.2% for the 490 and 480 nm emission wavelength, respectively.

14.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675654

RESUMEN

Diabetic wound healing is a significant clinical challenge because abnormal immune cells in the wound cause chronic inflammation and impair tissue regeneration. Therefore, regulating the behavior and function of macrophages may be conducive to improving treatment outcomes in diabetic wounds. Herein, sulfated chitosan (26SCS)-containing composite sponges (26SCS-SilMA/Col-330) with well-arranged layers and high porosity were constructed based on collagen and silk fibroin, aiming to induce an appropriate inflammatory response and promote angiogenesis. The results indicated that the ordered topological structure of composite sponges could trigger the pro-inflammatory response of Mφs in the early stage, and rapid release of 26SCS in the early and middle stages (within the concentration range of 1-3 mg/mL) induced a positive inflammatory response; initiated the pro-inflammatory reaction of Mφs within 3 days; shifted M1 Mφs to the M2 phenotype within 3-7 days; and significantly up-regulated the expression of two typical angiogenic growth factors, namely VEGF and PDGF-BB, on day 7, leading to rapid HUVEC migration and angiogenesis. In vivo data also demonstrated that on the 14th day after surgery, the 26SCS-SilMA/Col-330-implanted areas exhibited less inflammation, faster re-epithelialization, more abundant collagen deposition and a greater number of blood vessels in the skin tissue. The composite sponges with higher 26SCS contents (the (5.0) 26SCS-SilMA/Col-330 and the (7.5) 26SCS-SilMA/Col-330) could better orchestrate the phenotype and function of Mφs and facilitate wound healing. These findings highlight that the 26SCS-SilMA/Col-330 sponges developed in this work might have great potential as a novel dressing for the treatment of diabetic wounds.


Asunto(s)
Quitosano , Inflamación , Macrófagos , Neovascularización Fisiológica , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Ratas , Angiogénesis , Quitosano/química , Colágeno/química , Diabetes Mellitus Experimental , Fibroínas/química , Células Endoteliales de la Vena Umbilical Humana , Inflamación/patología , Macrófagos/metabolismo
15.
Opt Express ; 32(7): 12620-12635, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571080

RESUMEN

A method based on deflectometry to measure the refractive index distribution of radial gradient refractive index (GRIN) lens is proposed in this paper. The method establishes the relationship between the refractive index distribution and the direction of light ray by deriving the propagation equation of light in a non-uniform medium. By measuring the deflection angle using the principle of deflectometry and the assumption of central refraction, the refractive index distribution of the radial GRIN lens is determined. The specific principle of refractive index measurement deflectometry (RIMD) is described in detail, and the correctness and accuracy of the method are verified through numerical simulations. Furthermore, the effects of calibration error, lens surface shape on the accuracy of the measurement results are analyzed. In the experimental section, the proposed method is applied to measure a radial GRIN lens, and the results are compared with the nominal parameters in terms of shape distribution and numerical values, demonstrating good consistency. The measurement error is controlled within the order of 10-3. This method enables rapid and convenient acquisition of full-field information of GRIN lens and holds promising potential for playing an important role in lens manufacturing and production.

16.
Opt Lett ; 49(8): 2129-2132, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621093

RESUMEN

This Letter presents the frequency-domain searching algorithm in deflectometry (FSAD). By encoding specialized multi-frequency fringe patterns and employing a correlation searching algorithm, the limitations of existing frequency-domain methods can be overcome to some extent, thereby separating front and back surface reflections to obtain complete measurement data. The principles of FSAD are described in detail. In the experiment, a piece of window glass with thickness of 10 mm and a square area of 96 × 96 mm is measured to verify the proposed method.

17.
J Nat Prod ; 87(4): 705-712, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38547118

RESUMEN

Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 µg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.


Asunto(s)
Antifúngicos , Citrinina , Colletotrichum , Penicillium , Quinolonas , Penicillium/química , Colletotrichum/efectos de los fármacos , Quinolonas/farmacología , Quinolonas/química , Quinolonas/aislamiento & purificación , Estructura Molecular , Animales , Citrinina/farmacología , Citrinina/química , Citrinina/aislamiento & purificación , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
18.
ACS Nano ; 18(13): 9627-9635, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38489156

RESUMEN

High-temperature-resistant integrated circuits with excellent flexibility, a high integration level (nanoscale transistors), and low power consumption are highly desired in many fields, including aerospace. Compared with conventional SiC high-temperature transistors, transistors based on two-dimensional (2D) MoS2 have advantages of superb flexibility, atomic scale, and ultralow power consumption. However, MoS2 cannot survive at high temperature and drastically degrades above 200 °C. Here, we report MoS2 field-effect transistors (FETs) with top/bottom hexagonal boron nitride (h-BN) encapsulation and graphene electrodes. With the protection of the h-BN/h-BN structure, the devices can survive at much higher temperature (≥500 °C in air) than those of the MoS2 devices ever reported, which provides us an opportunity to explore the electrical properties and working mechanism of MoS2 devices at high temperature. Unlike the relatively low-temperature situation, the on/off ratio and subthreshold swing of MoS2 FETs show drastic variation at elevated temperature due to the injection of thermal emission carriers. Compared with metal electrode, devices with a graphene electrode demonstrate superior performance at high temperature (∼1-order-larger current on/off ratio, 3-7 times smaller subthreshold swing, and 5-9 times smaller threshold voltage shift). We further realize that the flexible CMOS NOT gate based on the above technique, and demonstrate logic computing at 550 °C. This work may stimulate the fundamental research of properties of 2D materials at high temperature, and also creates conditions for next-generation flexible harsh-environment-resistant integrated circuits.

19.
Nanotechnology ; 35(18)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358678

RESUMEN

Graphene is broadly applied as sensitive sensing material results from its superb features. Concurrently, as a derivative of graphene with 0D structure, graphene quantum dots (GQDs) offer more possibilities as a supportive sensing material due to its adjustable size and functional group modification. In this work, GQDs are introduced to single-layer graphene (SLG) based humidity sensor to enhance the sensing performance. Specifically, consistent resistance response to relative humidity (RH) is extended from the range of 10%-60% to 10%-90% by contrary to original SLG based sensor. Parallelly, effect of the amount of GQDs is investigated by means of multiple GQDs deposition. As the resultant higher binding efficiency between water molecules and the functional groups of GQDs, improved response rate is observed. For the case of 4-time deposition of GQDs, the response rate (ΔR/R) reaches ∼130% in RH range of 10%-90%. Besides, the response time and recovery time are ∼0.7 s and ∼1.1 s, respectively. The fluctuation of the resistance change of the sensor under constant humidity is less than 5% over a month which demonstrates long-term reliability.

20.
Environ Sci Pollut Res Int ; 31(15): 22663-22678, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409385

RESUMEN

Antibiotic contamination in soil has become a major concern worldwide. At present, it is not clear how two co-existed antibiotics with environmentally relevant concentrations would affect soil bacterial community structure, the abundances of antibiotic resistance genes (ARGs) and functional genes, and whether the effects of antibiotics would differ between rhizosphere and bulk soil. We conducted a greenhouse pot experiment to grow maize in a loess soil treated with oxytetracycline (OTC) or sulfadiazine (SDZ) or both at an environmentally relevant concentration (1 mg kg-1) to investigate the effects of OTC and SDZ on the rhizosphere and bulk soil bacterial communities, abundances of ARGs and carbon (C)-, nitrogen (N)-, and phosphorus (P)-cycling functional genes, and on plant growth and plant N and P nutrition. The results show that the effects of environmentally relevant concentrations of OTC and SDZ on bacterial communities and abundances of ARGs and functional genes differ between maize rhizosphere and bulk soil. The effects of two antibiotics resulted in a higher absolute abundances of accA, tet(34), tnpA-04, and sul2 in the rhizosphere soil than in the bulk soil and different bacterial community compositions and biomarkers in the rhizosphere soil and the bulk soil. However, OTC had a stronger inhibitory effect on the abundances of a few functional genes in the bulk soil than SDZ did, and their combination had no synergistic effect on plant growth, ARGs, and functional genes. The role of co-existed OTC and SDZ decreased shoot height and increased root N concentration. The results demonstrate that environmentally relevant concentrations of antibiotics shift soil microbial community structure, increase the abundances of ARGs, and reduce the abundances of functional genes. Furthermore, soil contamination with antibiotics can diminish agricultural production via phytotoxic effects on crops, and combined effects of antibiotics on plant growth and nutrient uptake should be considered.


Asunto(s)
Antibacterianos , Oxitetraciclina , Antibacterianos/farmacología , Sulfadiazina/farmacología , Oxitetraciclina/farmacología , Zea mays , Suelo , Rizosfera , Genes Bacterianos , Bacterias/genética , Farmacorresistencia Microbiana/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA