Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256210

RESUMEN

MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.


Asunto(s)
Lepidópteros , Metarhizium , MicroARNs , Animales , Metarhizium/genética , Lepidópteros/genética , Regiones no Traducidas 3' , Bioensayo , Larva/genética , MicroARNs/genética
2.
Genomics ; 114(4): 110381, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533967

RESUMEN

Diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is considered one of the most destructive worldwide agricultural pests and has developed various defence mechanisms to fight against the available pesticides. Understanding the host-defence system of P. xylostella is vital for developing biocontrol-based pest management strategies. Although there are several studies on P. xylostella, little is known about the changes in the immune system during the larva-to-adult metamorphosis. RNA-seq and iTRAQ investigations of P. xylostella from 2-day-old fourth instar larvae (L4D2), pupa (P0), and adult (A0) were done to understand these alterations at a molecular level. A total of 412/ 584 up-regulated and 1430/ 757 down-regulated genes/proteins between larva and pupa, 813/ 589 up-regulated and 1206/ 846 down-regulated genes/proteins between pupa and adult were identified. It was shown that the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) expression were up-regulated during the pupation and emergence of metamorphosis. The pathway enrichment analysis demonstrated that DEGs and DEPs were mainly associated with the energy generation and metabolism and innate immunity of the insect. The expression of immune-related and developmental-related genes were significantly different during the developmental process of P. xylostella. Moreover, the expression of four focused genes, i.e., serine proteinase inhibitor (Serpin-15), prophenoloxidase activating proteinase 1 (PAP-1) and 3a (PAP-3a), Gram-negative bacteria-binding protein (GNBP-6), was different in developmental stages and after Bacillus thuringiensis HD73 and Metarhizium anisopliae infection. The phenoloxidase (PO) activity in plasma was also significantly up-regulated during the pathogen infection. Recombinant proteins PAP-1, PAP-3a, GNBP-6 could significantly trigger the PO activity in vitro, Serpin-15 could suppress the PO activity. Taken together, these results indicate that Serpin-15, PAP-1, PAP-3a, and GNBP-6 might have the potential for co-regulation of immunity and development in P. xylostella. In conclusion, this study provided the immune system dynamics in the developmental process of P. xylostella and identified four candidate genes that can serve as potential targets for pest control strategies.


Asunto(s)
Mariposas Nocturnas , Serpinas , Animales , Sistema Inmunológico , Larva/genética , Proteómica , Pupa , Serpinas/genética , Serpinas/metabolismo , Transcriptoma
3.
Int J Biol Macromol ; 142: 114-124, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593730

RESUMEN

Peptidoglycan recognition proteins (PGRPs) are family of pattern recognition receptors (PRRs) and triggers the innate immune system (IIS) against the microbial infection. Although PGRPs have been intensively studied in model insects, they remain uncharacterized in most of the non-model insects. Here, we cloned and characterized a full-length cDNA of PGRP, from P. xylostella (PxPGRP-S1), which encodes a protein of 239 amino acids with PGRP domain, Ami2 domain and transmembrane region. The phylogenetic analysis revealed that the PxPGRP-S1 was closely related to the unigene of Plutella xylostella. Quantitative real-time PCR and immunohistochemistry revealed that PxPGRP-S1 is mainly expressed in the fat body of the healthy larva. The expression of PxPGRP-S1 was significantly upregulated in the midgut at 24 h postinfection by Bacillus thuringiensis. Silencing of the PxPGRP-S1 expression by RNAi, significantly decrease the expression of the antimicrobial peptides (AMPs) in the 4th instar larvae of P. xylostella. Similarly injection of an anti-PxPGRP-S1 serum caused the low expression of the AMPs in P. xylostella. Additionally, PxPGRP-S1 depleted P. xylostella by oral administration of bacterial expressed dsRNA decreased the resistance against B. thuringiensis challenge, leads to high mortality. Together, our result indicates that PxPGRP-S1, served as a bacterial pattern recognition receptor (PRR) and triggers the expression of AMPs in P. xylostella.


Asunto(s)
Antibacterianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Secuencia de Aminoácidos , Animales , Bacillus thuringiensis , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Clonación Molecular , Escherichia coli/genética , Regulación de la Expresión Génica , Inmunidad Innata , Proteínas de Insectos/genética , Larva , Modelos Animales , Filogenia , Interferencia de ARN , Proteínas Recombinantes/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...