Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.179
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718847

RESUMEN

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.

2.
Lipids Health Dis ; 23(1): 137, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720280

RESUMEN

BACKGROUND: Evidence suggests that hepatocyte mitochondrial dysfunction leads to abnormal lipid metabolism, redox imbalance, and programmed cell death, driving the onset and progression of non-alcoholic steatohepatitis (NASH). Identifying hub mitochondrial genes linked to NASH may unveil potential therapeutic targets. METHODS: Mitochondrial hub genes implicated in NASH were identified via analysis using 134 algorithms. RESULTS: The Random Forest algorithm (RF), the most effective among the 134 algorithms, identified three genes: Aldo-keto reductase family 1 member B10 (AKR1B10), thymidylate synthase (TYMS), and triggering receptor expressed in myeloid cell 2 (TREM2). They were upregulated and positively associated with genes promoting inflammation, genes involved in lipid synthesis, fibrosis, and nonalcoholic steatohepatitis activity scores in patients with NASH. Moreover, using these three genes, patients with NASH were accurately categorized into cluster 1, exhibiting heightened disease severity, and cluster 2, distinguished by milder disease activity. CONCLUSION: These three genes are pivotal mitochondrial genes implicated in NASH progression.


Asunto(s)
Algoritmos , Aprendizaje Automático , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Metabolismo de los Lípidos/genética , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Genes Mitocondriales
3.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725857

RESUMEN

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Asunto(s)
Receptores ErbB , Vesículas Extracelulares , Factores de Transcripción de Tipo Kruppel , Músculo Liso Vascular , Miocitos del Músculo Liso , Estrés Mecánico , Vesículas Extracelulares/metabolismo , Receptores ErbB/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Líquido Extracelular/metabolismo , Fenotipo , Animales , Aterosclerosis/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal
4.
Cell Death Discov ; 10(1): 224, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724500

RESUMEN

Spinal cord injury (SCI) remains a formidable challenge, lacking effective treatments. Following SCI, neural stem cells (NSCs) migrate to SCI sites, offering a potential avenue for nerve regeneration, but the effectiveness of this intrinsic repair mechanism remains suboptimal. Salidroside has demonstrated pro-repair attributes in various pathological conditions, including arthritis and cerebral ischemia, and the ability to curtail early-stage inflammation following SCI. However, the specific role of salidroside in the late-stage repair processes of SCI remains less defined. In this investigation, we observed that continuous salidroside treatment in SCI mice improved motor function recovery. Immunofluorescence-staining corroborated salidroside's capacity to stimulate nerve regeneration and remyelination, suppress glial scar hyperplasia, reduce the activation of neurotoxic A1 astrocytes, and facilitate NSCs migration towards the injured region. Mechanistically, in vitro experiments elucidated salidroside's significant role in restraining astrocyte proliferation and A1 polarization. It was further established that A1 astrocytes hinder NSCs proliferation while inducing their differentiation into astrocytes. Salidroside effectively ameliorated this inhibition of NSCs proliferation through diminishing c-Jun N-terminal kinase (JNK) pathway phosphorylation and restored their differentiation into neurons by suppressing the signal transducer and activator of transcription 3 (STAT3) pathway. In summary, our findings suggest that salidroside holds promise as a therapeutic agent for traumatic SCI treatment.

5.
Sci Rep ; 14(1): 10648, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729954

RESUMEN

Paste-type brazing materials have advantages such as adjusting the complexity of the parts to be soldered, easy storage and production in certain quantities. They can be used for brazing heat exchangers, liquid tanks and corrosion resistant parts. In this work, the microstructures and thermal behaviors of Al-Si-Cu-Ni brazing materials with different contents were investigated, and the effect of brazing process on the microstructural evolution and mechanical properties of brazed joints produced under nitrogen-filled environment was examined. It was found that the melting temperature of brazing material Al-5Si-20.5Cu-2Ni were ranged from 512.86 to 549.37 °C. The microstructure of Al-5Si-20.5Cu-2Ni consisted of α-Al solid solution, CuAl2 intermetallic compounds, the Al-Si-Cu phase, and some fine irregular Si particles in a homogenous manner. The microstructure of the brazed joints was uniformly formed during the brazing condition of 580 °C for 20 min, and the shear strength of the joints reached 41.76 MPa.

6.
Food Res Int ; 186: 114319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729690

RESUMEN

The "outstanding and unique aged aroma" of Chinese Chenxiang-type baijiu (CXB)-Daoguang 25 (DG25) mainly originates from a "extraordinary storage technology" of Mujiuhai (a wooden container), so it is mysterious and interesting. In this study, an untargeted GC/MS-based metabolomics was used to reveals the volatile differential metabolites for discriminating six different vintages of DG25 combing with chemometrics. A total of 100 volatile metabolites (including unknowns) were extracted and identified, including esters (41%), alcohols (10%) and acids (7%) so on. Finally, 33 differential metabolites were identified as aging-markers. Among them, 25 aging-markers showed a downtrend, including 17 esters such as ethyl acetate, ethyl hexanoate and ethyl palmitate so on. Moreover, it was interesting and to further study that furans showed a significant downtrend. Statistically speaking, ethyl benzoate played an important role in discriminating vintage of 1Y and 3Y, and the other 24 differential metabolites with downtrend discriminating the unstored (0Y-aged) DG25. Eight differential metabolites, such as ethyl octanoate, benzaldehyde, 3-methylbutanol and 1,1-diethoxyaccetal so on increased during aging of DG25, and they played a statistical role in discriminating the 5Y-, 10Y- and 20Y-aged DG25. This study provides a theoretical basis way for the formation mechanism of aging aroma for CXB.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Odorantes/análisis , Vino/análisis , Bebidas Alcohólicas/análisis
7.
Environ Res ; 252(Pt 4): 119076, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38710430

RESUMEN

The large yield of anaerobic digestates and the suboptimal efficacy of nutrient slow-release severely limit its practical application. To address these issues, a new biochar based fertilizer (MAP@BRC) was developed using biogas residue biochar (BRC) to recover nitrogen and phosphorus from biogas slurry. The nutrient release patterns of MAP@BRC and mechanisms for enhancing soil fertility were studied, and it demonstrated excellent performance, with 59% total nitrogen and 50% total phosphorus nutrient release rates within 28 days. This was attributed to the coupling of the mechanism involving the dissolution of struvite skeletons and the release of biochar pores. Pot experiments showed that crop yield and water productivity were doubled in the MAP@BRC group compared with unfertilized planting. The application of MAP@BRC also improved soil nutrient levels, reduced soil acidification, increased microbial populations, and decreased soil heavy metal pollution risk. The key factors that contributed to the improvement in soil fertility by MAP@BRC were an increase in available nitrogen and the optimization of pH levels in the soil. Overall, MAP@BRC is a safe, slow-release fertilizer that exhibits biochar-fertilizer interactions and synergistic effects. This slow-release fertilizer was prepared by treating a phosphorus-rich biogas slurry with a nitrogen-rich biogas slurry, and it simultaneously addresses problems associated with livestock waste treatment and provides a promising strategy to promote zero-waste agriculture.

8.
Ecotoxicol Environ Saf ; 278: 116414, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714086

RESUMEN

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.

9.
Front Oncol ; 14: 1382985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746678

RESUMEN

Giant phyllodes tumors are rare fibroepithelial tumors that are usually larger than 10 cm in diameter, have rapid tumor growth, and are easily recurrent. They are frequently accompanied by skin necrosis and infection, particularly in malignant phyllodes tumors. This case report presents a 50-year-old woman who presented to the hospital with a huge left breast mass that was ruptured and infected. The patient received anti-infective treatment and underwent mastectomy and skin grafting, which indicated a malignant phyllodes tumor. The tumor was completely excised after a local recurrence in the chest wall 6 months post-surgery. Unfortunately, one year later, the patient pass away due to multiple organ failure. Giant phyllodes tumor management presents challenges to the surgeon. This case is being presented to enhance understanding and treatment of phyllodes tumors, specifically giant malignant phyllodes tumors, with the aim of improving patients' quality of life.

10.
Int J Biol Macromol ; : 132243, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38744369

RESUMEN

Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.

11.
Phys Chem Chem Phys ; 26(19): 14336-14344, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699833

RESUMEN

Investigating the effects of electrolyte ions on the adsorption configuration of methanol at a charged interface is important for studying the interface structure of electrolyte solutions and the oxidation mechanism of methanol in fuel cells. This study uses sum frequency generation (SFG) and heterodyne-detected second harmonic generation (HD-SHG) to investigate the adsorption configuration of methanol at the air/aqueous interface of 0.1 M NaClO4 solution, 0.1 M HClO4 solution and pure water. The results elucidate that the ion effect in the electrolyte solution affects the interface's charged state and the methanol's adsorption conformation at the interface. The negatively charged surface of the 0.1 M NaClO4 solution and the positively charged surface of the 0.1 M HClO4 solution arise from the corresponding specific ionic effects of the electrolyte solution. The orientation angle of methyl with respect to the surface normal is 43.4° ± 0.1° at the 0.1 M NaClO4 solution surface and 21.5° ± 0.2° at the 0.1 M HClO4 solution surface. Examining these adsorption configurations in detail, we find that at the negatively charged surface the inclined orientation angle (43.4°) of methanol favors the hydroxymethyl production by breaking the C-H bond, while at the positively charged surface the upright orientation angle (21.5°) of methanol promotes the methoxy formation by breaking the O-H bond. These findings not only illuminate the intricate ion effects on small organic molecules but also contribute to a molecular-level comprehension of the oxidation mechanism of methanol at electrode interfaces.

12.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735969

RESUMEN

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Asunto(s)
Macrófagos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Poliuretanos , Ratas Sprague-Dawley , Células de Schwann , Animales , Regeneración Nerviosa/efectos de los fármacos , Poliuretanos/química , Ratas , Macrófagos/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Nanofibras/química , Nervio Ciático/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química , Ratones , Células RAW 264.7
13.
Support Care Cancer ; 32(6): 333, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713314

RESUMEN

PURPOSE: To identify the symptom cluster among cancer survivors and examine their subgroup differences via network analysis based on nationally representative data. METHODS: This cross-sectional study included 2966 survivors participating in the 2020 National Health Interview Survey (NHIS). Participants self-reported the presence of 14 symptoms capturing four clusters (physical, somatic, sleep, and psychologic problems). Network analysis models were used to reveal the relationships between symptoms and those interactions. Network comparison tests were applied to compare subgroups. RESULTS: The core symptoms of the symptom cluster were fatigue (Bet = 33, Clo = 0.0067, Str = 0.9397), pain (Bet = 11, Clo = 0.0060, Str = 0.9226), wake up well rested (Bet = 25, Clo = 0.0057, Str = 0.8491), and anxiety (Bet = 5, Clo = 0.0043, Str = 0.9697) among cancer survivors. The core symptoms, network structure, and global strength were invariant between time since diagnoses (< 2 years vs. ≥ 2 years) or between numbers of cancers (1 vs. ≥ 2), yet varied between the comorbidity group and non-comorbidity group (≥ 1 vs. 0). CONCLUSIONS: Fatigue would be a potential target for alleviating other symptoms through a negative feedback loop of other related symptoms of cancer survivors. In particular, cancer survivors with other chronic diseases should be the focus of attention and strengthen targeted intervention.


Asunto(s)
Supervivientes de Cáncer , Humanos , Supervivientes de Cáncer/estadística & datos numéricos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Fatiga/epidemiología , Fatiga/etiología , Neoplasias/complicaciones , Ansiedad/epidemiología , Ansiedad/etiología , Encuestas Epidemiológicas , Encuestas y Cuestionarios , Estados Unidos/epidemiología
14.
Tissue Cell ; 88: 102399, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38723330

RESUMEN

OBJECTIVE: This study aimed to investigate the expression and functional role of NISCH in skin cutaneous melanoma (SKCM), exploring its association with clinical characteristics and its potential impact on human skin melanoma cell behavior. METHODS: The research assessed differential NISCH expression in SKCM tissues using the GEPIA (Gene Expression Profiling Interactive Analysis) database and validated these findings through immunohistochemical staining of 45 clinical samples. To affirm NISCH expression at the cellular level, three human skin melanoma cell lines (RPMI-7951, A375, MEL-5), and the human normal skin cell line HEMa underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Transwell experiments evaluated the migration and invasion capabilities of RPMI-7951 and A375 cells post-transduction with NISCH or PAK1 lentiviral activation particles. Additionally, qRT-PCR analysis of epithelial-mesenchymal transition (EMT)-related gene expression (Vimentin, E-cadherin, N-cadherin) was conducted in A375 and RPMI-7951 cells. RESULTS: SKCM tissues exhibited significantly reduced NISCH expression compared to normal tissues. Immunohistochemical analysis revealed predominant nuclear localization of NISCH in melanoma cells, with reduced expression significantly correlating with sex, advanced stage, and lymph node metastasis. Melanoma cell lines displayed lower NISCH expression levels compared to normal skin cells. Functional experiments showcased that NISCH overexpression suppressed p-PAK1/PAK1, while PAK1 upregulation notably increased melanoma cell migration, invasion, and induced EMT. Remarkably, NISCH overexpression counteracted PAK1-induced effects on EMT, migration, and invasion in melanoma cells. CONCLUSION: NISCH may significantly influence the aggressive behavior of SKCM cells via the PAK1 pathway, making it a potential therapeutic target for managing melanoma metastasis.

15.
Fish Shellfish Immunol ; 149: 109595, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692381

RESUMEN

This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-ß was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.

16.
Sci Rep ; 14(1): 9983, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693143

RESUMEN

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Asunto(s)
Doxorrubicina , Hidrogeles , Estructuras Metalorgánicas , Metacrilatos , Nanopartículas , Cicatrización de Heridas , Animales , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Cicatrización de Heridas/efectos de los fármacos , Nanopartículas/química , Hidrogeles/química , Ratas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Gelatina/química , Cerio/química , Cerio/farmacología , Zeolitas/química , Zeolitas/farmacología , Línea Celular Tumoral , Masculino , Imidazoles/química , Imidazoles/administración & dosificación , Imidazoles/farmacología , Ratas Sprague-Dawley
18.
Artículo en Inglés | MEDLINE | ID: mdl-38696751

RESUMEN

OBJECTIVES: Currently, there is no reliable automated measurement method to study the changes in the condylar process after orthognathic surgery. Therefore, this study proposes an automated method to measure condylar changes in patients with skeletal class II malocclusion following surgical-orthodontic treatment. METHODS: Cone-beam computed tomography (CBCT) scans from 48 patients were segmented using the nnU-Net network for automated maxillary and mandibular delineation. Regions unaffected by orthognathic surgery were selectively cropped. Automated registration yielded condylar displacement and volume calculations, each repeated three times for precision. Logistic regression and Linear regression were used to analyze the correlation between condylar position changes at different time points. RESULTS: The Dice score for the automated segmentation of the condyle was 0.971. The Intraclass correlation coefficients (ICCs) for all repeated measurements ranged from 0.93 to 1.00. The results of the automated measurement showed that 83.33% of patients exhibited condylar resorption occurring six months or more after surgery. Logistic regression and Linear regression indicated a positive correlation between counterclockwise rotation in the Pitch plane and condylar resorption(p < 0.01). And a positive correlation between the rotational angles in both three planes and changes in the condylar volume at six months after surgery(p ≤ 0.04). CONCLUSIONS: This study's automated method for measuring condylar changes shows excellent repeatability. Skeletal class II malocclusion patients may experience condylar resorption after bimaxillary orthognathic surgery, and this is correlated with counterclockwise rotation in the sagittal plane. ADVANCES IN KNOWLEDGE: This study proposes an innovative multi-step registration method based on CBCT, and establishes an automated approach for quantitatively measuring condyle changes post-orthognathic surgery. This method opens up new possibilities for studying condylar morphology.

19.
Front Neurol ; 15: 1327206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689877

RESUMEN

Background: Bell's palsy is an acute peripheral facial neuropathy, which is one of the most common causes of facial palsy of lower motor neurons. Facial nerve swelling is commonly observed in Bell's palsy. Acupuncture therapy has been widely used in the treatment of Bell's palsy. However, whether acupuncture can be effectively used in the acute stage is still controversial. There are no clinical trials conducted previously to evaluate the effect of acupuncture on facial nerve edema in Bell's palsy patients. The study aims to evaluate the potential efficacy of different acupuncture modalities on Bell's palsy patients in the acute phase, its effect on facial nerve edema, and to preliminarily explore its possible mechanism. Methods and analysis: In this randomized, controlled trial, 165 Bell's palsy patients with unilateral onset within 3 days will be recruited and randomly assigned to either the electroacupuncture group (n = 33), the acupuncture group (n = 33), the sham acupuncture group (n = 33), the blank control group (n = 33), or the acupuncture control group (n = 33) in a 1:1:1:1:1 ratio. The participants will receive 4 weeks of treatment and 8 weeks of follow-up. The five groups of participants will receive the following treatments: A: Electroacupuncture + Medication (prednisone acetate tablets, mecobalamin tablets, and vitamin B1 tablets); B: Acupuncture + Medication; C: Sham Acupuncture + Medication; D: Medication only; and E: Acupuncture only. The primary outcome will be the effectiveness rate of different acupuncture modalities in improving facial nerve function after the intervention period. The secondary outcomes will be the recovery speed, the diameter of the facial nerve, the echo intensity and thickness of facial muscles, blood flow parameters of the facial artery, the serum inflammatory level, safety evaluation, and adverse events. Preliminary exploration of its mechanism of action occurs through inflammation and immune response. The difference between groups will be assessed using repeated measure analysis of covariance (ANCOVA) and trend chi-square. Discussion: The trial will evaluate the efficacy and facial nerve edema of acupuncture for Bell's palsy patients in the acute phase and preliminarily explore its possible mechanism. The results thus may provide evidence for clinical application. Clinical trial registration: https://www.chictr.org.cn/bin/project/edit?pid=133211, identifier ChiCTR2100050815.

20.
J Biomed Opt ; 29(6): 065001, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737791

RESUMEN

Significance: Type 2 diabetes mellitus (T2DM) is a global health concern with significant implications for vascular health. The current evaluation methods cannot achieve effective, portable, and quantitative evaluation of foot microcirculation. Aim: We aim to use a wearable device laser Doppler flowmetry (LDF) to evaluate the foot microcirculation of T2DM patients at rest. Approach: Eleven T2DM patients and twelve healthy subjects participated in this study. The wearable LDF was used to measure the blood flows (BFs) for regions of the first metatarsal head (M1), fifth metatarsal head (M5), heel, and dorsal foot. Typical wavelet analysis was used to decompose the five individual control mechanisms: endothelial, neurogenic, myogenic, respiratory, and heart components. The mean BF and sample entropy (SE) were calculated, and the differences between diabetic patients and healthy adults and among the four regions were compared. Results: Diabetic patients showed significantly reduced mean BF in the neurogenic (p=0.044) and heart (p=0.001) components at the M1 and M5 regions (p=0.025) compared with healthy adults. Diabetic patients had significantly lower SE in the neurogenic (p=0.049) and myogenic (p=0.032) components at the M1 region, as well as in the endothelial (p<0.001) component at the M5 region and in the myogenic component at the dorsal foot (p=0.007), compared with healthy adults. The SE in the myogenic component at the dorsal foot was lower than at the M5 region (p=0.050) and heel area (p=0.041). Similarly, the SE in the heart component at the dorsal foot was lower than at the M5 region (p=0.017) and heel area (p=0.028) in diabetic patients. Conclusions: This study indicated the potential of using the novel wearable LDF device for tracking vascular complications and implementing targeted interventions in T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pie Diabético , Pie , Flujometría por Láser-Doppler , Microcirculación , Dispositivos Electrónicos Vestibles , Humanos , Pie Diabético/fisiopatología , Pie Diabético/diagnóstico por imagen , Masculino , Microcirculación/fisiología , Femenino , Flujometría por Láser-Doppler/métodos , Diabetes Mellitus Tipo 2/fisiopatología , Persona de Mediana Edad , Pie/irrigación sanguínea , Anciano , Análisis de Ondículas , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...