Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400162, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719215

RESUMEN

Light irradiation is an external stimulus, rapidly developed in switchable atom transfer radical polymerization (ATRP) via photo-activation methods in recent years. Herein, a photo-deactivation strategy is introduced to regulate ATRP with the assistance of photoswitchable hexaarylbiimidozole (HABI). Under visible light irradiation and in the presence of HABI, ATRP is greatly decelerated or quenched depending on the concentration of HABI. Interestingly, with visible light off, ATRP can proceed smoothly and follow a first-order kinetics. Moreover, photo-switchable ATRP alternatively with light off and on is demonstrated. Besides, the mechanism of photo-deactivation ATRP involving radical quenching is proposed in the presence of HABI.

2.
Adv Sci (Weinh) ; : e2400898, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647422

RESUMEN

Fabrication of versatile hydrogels in a facile and effective manner represents a pivotal challenge in the field of biomaterials. Herein, a novel strategy is presented for preparing on-demand degradable hydrogels with multilevel responsiveness. By employing selenol-dichlorotetrazine nucleophilic aromatic substitution (SNAr) to synthesize hydrogels under mild conditions in a buffer solution, the necessity of additives or posttreatments can be obviated. The nucleophilic and redox reactions between selenol and tetrazine culminate in the formation of three degradable chemical bonds-diselenide, aryl selenide, and dearomatized selenide-in a single, expeditious step. The resultant hydrogel manifests exceptional adaptability to intricate environments in conjunction with self-healing and on-demand degradation properties. Furthermore, the resulting material demonstrated light-triggered antibacterial activity. Animal studies further underscore the potential of integrating metformin into Se-Tz hydrogels under green light irradiation, as it effectively stimulates angiogenesis and collagen deposition, thereby fostering efficient wound healing. In comparison to previously documented hydrogels, Se-Tz hydrogels exhibit controlled degradation and drug release, outstanding antibacterial activity, mechanical robustness, and bioactivity, all without the need for costly and intricate preparation procedures. These findings underscore Se-Tz hydrogels as a safe and effective therapeutic option for diabetic wound dressings.

3.
Angew Chem Int Ed Engl ; : e202402233, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591713

RESUMEN

In this paper, we proposed a heteroatom substitution strategy (HSS) in the δ-valerolactone (VL) system to modulate thermodynamics toward chemically recyclable polyesters. Three VL-based monomers containing different heteroatoms (M1 (N), M2 (S), and M3 (O)), instead of C-5 carbon, were designed and synthesized to verify our proposed HSS. All three monomers undergo organocatalytic living/controlled ROP and controllable depolymerization. Impressively, the resulting P(M1) achieved over 99 % monomer recovery under both mild solution depolymerization and high vacuum pyrolysis conditions without any side reactions, and the recycled monomers can be polymerized again forming new polymers. The systematic study of the relationship between heteroatom substitution and recyclability shows that introducing heteroatoms does change the thermodynamics of the monomers (ΔHp o, ΔSp o and Tc values), thereby adjusting the polymerizability and depolymerizability. DFT calculations found that the introduction of heteroatoms adjusts the ring strain by changing the angular strain of the monomers, and the order of their angular strain (M2>M1>M3) is consistent with the order of the experimentally obtained enthalpy change. Notably, the one-pot/one-step copolymerization of two of each of the three monomers enables the synthesis of sequence-controlled copolymers from gradient to random to block structures, by simply switching the copolymerization temperature.

4.
Angew Chem Int Ed Engl ; 63(10): e202318564, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38230985

RESUMEN

Photoinduced 3D printing based on the reversible addition-fragmentation chain transfer (RAFT) process has emerged as a robust method for creating diverse functional materials. However, achieving precise control over the mechanical properties of these printed objects remains a critical challenge for practical application. Here, we demonstrated a RAFT step-growth polymerization of a bifunctional xanthate and bifunctional vinyl acetate. Additionally, we demonstrated photoinduced 3D printing through RAFT step-growth polymerization with a tetrafunctional xanthate and a bifunctional vinyl acetate. By adjusting the molar ratio of the components in the printing resins, we finely tuned the polymerization mechanism from step-growth to chain-growth. This adjustment resulted in a remarkable range of tunable Young's moduli, ranging from 7.6 MPa to 997.1 MPa. Moreover, post-functionalization and polymer welding of the printed objects with varying mechanical properties opens up a promising way to produce tailor-made materials with specific and tunable properties.

5.
Angew Chem Int Ed Engl ; 63(5): e202315686, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085492

RESUMEN

Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.

6.
Angew Chem Int Ed Engl ; 63(5): e202316183, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38063461

RESUMEN

To date, perovskite solar cells (pero-SCs) with doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) hole transporting layers (HTLs) have shown the highest recorded power conversion efficiencies (PCEs). However, their commercialization is still impeded by poor device stability owing to the hygroscopic lithium bis(trifluoromethanesulfonyl)imide and volatile 4-tert-butylpyridine dopants as well as time-consuming oxidation in air. In this study, we explored a series of single-component iodonium initiators with strong oxidability and different electron delocalization properties to precisely manipulate the oxidation states of Spiro-OMeTAD without air assistance, and the oxidation mechanism was clearly understood. Iodine (III) in the diphenyliodonium cation (IP+ ) can accept a single electron from Spiro-OMeTAD and forms Spiro-OMeTAD⋅+ owing to its strong oxidability. Moreover, because of the coordination of the strongly delocalized TFSI- with Spiro-OMeTAD⋅+ in a stable radical complex, the resulting hole mobility was 30 times higher than that of pristine Spiro-OMeTAD. In addition, the IP-TFSI initiator facilitated the growth of a homogeneous and pinhole-free Spiro-OMeTAD film. The pero-SCs based on this oxidizing HTL showed excellent efficiencies of 25.16 % (certified: 24.85 % for 0.062-cm2 ) and 20.71 % for a 15.03-cm2 module as well as remarkable overall stability.

7.
Angew Chem Int Ed Engl ; 63(6): e202313370, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37875462

RESUMEN

Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.


Asunto(s)
Polímeros , Proteínas , Polímeros/química , Proteínas/química , Espectrometría de Masas en Tándem
8.
RSC Adv ; 13(35): 24181-24190, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37575403

RESUMEN

Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution. These oligomer isomers assembled into different nanoparticles, including nanofibers, hollow vesicles and spherical micellar complexes, in a THF/water/HCl mixture under the same conditions. UV-vis absorption spectra, differential scanning calorimetry (DSC) and X-ray scattering (XRD) experiments combined with theoretical calculations reveal that the sequence-controlled co-oligomers induce different molecular packing conformations and arrangement modes of building blocks in self-assembly. Furthermore, these self-assembled nanoparticles demonstrate photoresponsive morphological transformation and fluorescence emission under UV light irradiation due to trans-to-cis photoisomerization of azobenzene. This work demonstrates that customizing functional nanoparticles can be achieved by controlling the sequence structure in synthetic co-oligomers.

9.
ACS Macro Lett ; 12(8): 1159-1165, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523272

RESUMEN

The development of mechanochemical tools for regulating the polymerization process has received an increasing amount of attention in recent years. Herein, we report the example of the mechanically controlled iodine-mediated reversible-deactivation radical polymerization (mechano-RDRP) using piezoelectric tetragonal BaTiO3 nanoparticles (T-BTO) as mechanoredox catalyst and alkyl iodide as the initiator. We demonstrated a more efficient mechanochemical initiation and reversible deactivation process than sonochemical activation via a mechanoredox-mediated alkyl iodide cleavage reaction. The mechanochemical activation of the C-I bond was verified by density functional theory (DFT) calculations. Theoretical calculations together with experimental results confirmed the more efficient initiation and polymerization than the traditional sonochemical approach. The influence of BaTiO3, initiator, and solvent was further examined to reveal the mechanism of the mechano-RDRP. The results showed good controllability over molecular weight and capacity for a one-pot chain extension. This work expands the scope of mechanically controlled polymerization and shows good potential in the construction of adaptive materials.

10.
Macromol Rapid Commun ; 44(18): e2300198, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37231589

RESUMEN

Modulating on-demand polymerization is a challenge in synthetic macromolecules. Herein, tailoring polymerization controllability and dispersity during single-electron transfer mediated living radical polymerization (SET-LRP) of methyl methacrylate (MMA) is achieved. Hexaarylbiimidazole (HABI) is employed as a photoswitchable catalyst, allowing reversible control of catalytic activity between an active and inactive state. In the presence of HABI and with the light on (active state), control SET-LRP of MMA follows first-order kinetics, resulting in polymers with a narrow molecular weight distribution. In contrast, polymerization responds to light and reverts to their original uncontrolled state with light off (inactive state). Therefore, repeatable resetting polymerization can be easily performed. The key to photomodulating dispersity is to use an efficient molecular switch to tailor the breadths of dispersity. Besides, the mechanism of HABI-mediated SET-LRP with switchable ability is proposed.


Asunto(s)
Polímeros , Polimerizacion , Sustancias Macromoleculares , Metilmetacrilato
11.
Biomater Res ; 27(1): 49, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202774

RESUMEN

BACKGROUND: Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release. METHODS: Herein, selenium-containing hybrid hydrogels, defined as DSeP@PB, were fabricated via the reinforcement of selenol-end capping polyethylene glycol (PEG) hydrogels by polydopamine nanoparticles (PDANPs) and Prussian blue nanozymes in a one-pot approach in the absence of any other chemical additive or organic solvent based on diselenide and selenide bonding-guided crosslinking, making them accessible for large-scale mass production. RESULTS: Reinforcement by PDANPs greatly increases the mechanical properties of the hydrogels, realizing excellent injectability and flexible mechanical properties for DSeP@PB. Dynamic diselenide introduction endowed the hydrogels with on-demand degradation under reducing or oxidizing conditions and light-triggered nanozyme release. The bioactivity of Prussian blue nanozymes afforded the hydrogels with efficient antibacterial, ROS-scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further animal studies indicated that DSeP@PB under red light irradiation showed the most efficient wound healing activity by stimulating angiogenesis and collagen deposition and inhibiting inflammation. CONCLUSION: The combined merits of DSeP@PB (on-demand degradation, light-triggered release, flexible mechanical robustness, antibacterial, ROS-scavenging and immunomodulatory capacities) enable its high potential as a new hydrogel dressing that can be harnessed for safe and efficient therapeutics for diabetic wound healing.

12.
Chem Sci ; 14(19): 5116-5124, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37206386

RESUMEN

In nature, the communication of primary amino acids in the polypeptides influences molecular-level packing, supramolecular chirality, and the resulting protein structures. In chiral side-chain liquid crystalline polymers (SCLCPs), however, the hierarchical chiral communication between supramolecular mesogens is still determined by the parent chiral source due to the intermolecular interactions. Herein, we present a novel strategy to enable the tunable chiral-to-chiral communication in azobenzene (Azo) SCLCPs, in which the chiroptical properties are not dominated by the configurational point chirality but by the conformationally supramolecular chirality that emerged. The communication of dyads biases supramolecular chirality with multiple packing preference, thereby overruling the configurational chirality of the stereocenter. The chiral communication mechanism between the side-chain mesogens is revealed through the systematic study of the chiral arrangement at the molecular level, including mesomorphic properties, stacking modes, chiroptical dynamics and further morphological dimensions.

13.
Chemistry ; 29(34): e202300526, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36999434

RESUMEN

Rational design of monomer sequence for desired properties is challenging. This study investigates the effect of monomer distribution of double hydrophilic copolymers (DHCs) with electron-rich units on cluster triggered emission (CTE) capacity. By means of combining latent monomer strategy, reversible addition fragmentation chain transfer (RAFT) polymerization and selective hydrolysis technology, the random, pseudo di-block and the gradient DHCs consisting of pH-responsive polyacrylic acid (PAA) segments and thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) segments were successfully synthesized in a controlled manner. Moreover, the gradient DHCs showed a tremendously increased luminescent intensity due to the distinct hydrogen-bonding interaction compared to random and pseudo di-block DHCs. To the best of our knowledge, this is the first reported the direct correlation between luminescent intensity and sequence structure of non-conjugated polymer. Meanwhile, thermo and pH dual-responsive clusteroluminescence could be easily performed. This work demonstrates a novel and facile method to tailor the hydrogen-bonding for the stimuli-responsive light-emitting polymers.

14.
Nat Chem ; 15(2): 257-270, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36329179

RESUMEN

Identification and quantification of synthetic polymers in complex biological milieu are crucial for delivery, sensing and scaffolding functions, but conventional techniques based on imaging probe labellings only afford qualitative results. Here we report modular construction of precise sequence-defined amphiphilic polymers that self-assemble into digital micelles with contour lengths strictly regulated by oligourethane sequences. Direct sequence reading is accomplished with matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry, facilitated by high-affinity binding of alkali metal ions with poly(ethylene glycol) dendrons and selective cleavage of benzyl-carbamate linkages. A mixture of four types of digital micelles could be identified, sequence-decoded and quantified by MALDI and MALDI imaging at cellular, organ and tissue slice levels upon in vivo administration, enabling direct comparison of biological properties for each type of digital micelle in the same animal. The concept of digital micelles and encoded amphiphiles capable of direct sequencing and high-throughput label-free quantification could be exploited for next-generation precision nanomedicine designs (such as digital lipids) and protein corona studies.


Asunto(s)
Micelas , Animales , Polietilenglicoles/química , Polímeros/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
15.
Macromol Rapid Commun ; 44(1): e2200301, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35748135

RESUMEN

Polypeptoids, structural mimics of polypeptides, have attracted considerable attention due to their biocompatibility, proteolytic stability, thermal processability, good solubility, synthetic accessibility, and structural diversity. Polypeptoids have emerged as an interesting material in both polymer science and biological field. This review primarily discusses the research progress of polypeptoids prepared by controlled ring-opening polymerizations in the past decade, including synthetic strategies of monomers, polymerizations by different initiators, postfunctionalization, fundamental properties, crystallization-driven self-assembly, and potential biological applications.


Asunto(s)
Péptidos , Polímeros , Polimerizacion , Péptidos/química , Polímeros/química , Péptido Hidrolasas , Cristalización
16.
Chem Sci ; 13(45): 13623-13630, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507187

RESUMEN

The evolution of hierarchical chirality at macromolecular and supramolecular levels in biological systems is ubiquitous; however, achieving precise control over transitions between them in polymer systems is still challenging. Here, we reported multiple chiroptical transitions and inversion phenomena in side-chain azobenzene (Azo) polymers, PAzo-l/d-m (m = 3, 6, 7, 8, 9, and 10, where m is the total number of atoms from the chiral stereocenter to the Azo unit), with different distances from the chiral stereocenter to the Azo unit. In the case of m = 3, an unexpected macromolecular-to-supramolecular chirality transition and inversion occurred in situ when the Azo-polymer underwent from a macromolecular-dissolved state to a supramolecular-aggregated state. To our surprise, an exciton-coupling induced multiple chiroptical inversion was observed upon the heating-assisted reassembly treatment, which was demonstrated to be driven by H- to J-aggregation transition. Furthermore, the odd-even effect was first established to regulate the supramolecular helical orientations (left- or right-handedness) in side-chain Azo-polymer assemblies.

17.
ACS Macro Lett ; 11(2): 230-235, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35574774

RESUMEN

Photoinduced polymerization is an attractive technique with the advantages of easy operation, mild conditions, and excellent temporospatial controllability. However, the application of this technique in step-growth polymerization is highly challenging. Here, we present a catalyst-free, visible-light-induced step-growth polymerization method utilizing a photo-RAFT single-unit monomer insertion reaction between the xanthate and vinyl ether groups. Benefitting from this reaction, a pendant cationic RAFT agent can be generated in each repeating unit of the polymer backbone. Both cationic and radical side chain extensions were successfully realized, providing a facile approach for the postpolymerization of step-growth polymers for the development of various functional polymeric materials.

18.
Chem Commun (Camb) ; 58(31): 4813-4824, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35352709

RESUMEN

The field of force-induced release of small cargoes within polymeric materials has experienced rapid growth over the past decade, not only including achieving diversified functional materials that report force, trigger degradation, activate drugs and release catalysts, but also involving investigations on the interesting force-coupled reactivity of mechanophores, such as ferrocenes. In this highlight article, we review the recent progress on polymer mechanochemistry that releases small cargoes, including small molecules and metal ions. Since mechanophores play a key role in force-responsive materials, we introduce the progress by discussing different types of mechanophores and their mechanochemical reactions for the release of acids, gases, fluorophores, drugs, iron ions, and so on. At the end, we provide our perspectives on the remaining challenges and future targets in this growing field.


Asunto(s)
Fenómenos Mecánicos , Polímeros , Catálisis , Colorantes Fluorescentes , Polímeros/química
19.
Macromol Rapid Commun ; 43(9): e2200029, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322486

RESUMEN

Digital polymers with precisely arranged binary units provide an important option for information storage. This is especially true if the digital polymers are assembled in a device, as it would be of great benefit for data writing and reading in practice. Herein, inspired by the DNA microarray technique, the programmable information storing and reading on a mass spectrometry target plate is proposed. First, an array of 4-bit sequence-coded dithiosuccinimide oligomers is efficiently built through sequential thiol-maleimide Michael couplings with good sequence readability by tandem mass spectrometry (MS/MS). Then, toward engineering microarrays for information storage, a programmed robotic arm is specifically designed for precisely loading sequence-coded oligomers onto the target plate, and a decoding software is developed for efficient readout of the data from MS/MS sequencing. Notably, short sequence-coded oligomer chains can be used to write long strings of information, and extra error-correction codes are not required as usual due to the inherent concomitant fragmentation signals. Not only text but also bitimages can be automatically stored and decoded with excellent accuracy. This work provides a promising platform of digital polymers for programmable information storing and reading.


Asunto(s)
Polímeros , Espectrometría de Masas en Tándem , Polímeros/química , Espectrometría de Masas en Tándem/métodos
20.
Small ; 17(46): e2103177, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34643037

RESUMEN

Regulating the mutual stacking arrangements is of great interest for understanding the origin of chirality at different hierarchical levels in nature. Different from molecular level chirality, the control and manipulation of hierarchical chirality in polymer systems is limited to the use of external factors as the energetically demanding switching stimulus. Herein, the first self-assembly strategy of polymerization-induced helicity inversion (PIHI), in which the controlled packing and dynamic stereomutation of azobenzene (Azo) building blocks are realized by in situ polymerization without any external stimulus, is reported. A multiple helicity inversion and intriguing helix-helix transition of polymeric supramolecular nanofibers occurs during polymerization, which is collectively confirmed to be mediated by the transition between functionality-oriented π-π stacking, H-, and J-aggregation. The studies further reveal that helicity inversion proceeds through a delicate interplay of the thermodynamically and kinetically controlled, pathway-dependent interconversion process, which should provide new insight into the origin and handedness control of helical nanostructures with desired chirality.


Asunto(s)
Nanofibras , Nanoestructuras , Polimerizacion , Polímeros , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...