Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 318: 137936, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36702409

RESUMEN

Frequent detection and joint toxicity of sulfonamides (SAs) and phthalate acid esters (PAEs) in water environment have caused serious health and safety problems that can be reduced by vertical flow constructed wetland (VFCW). However, it remains unclear what kind of substrate used in VFCW can synergistically remove SAs and PAEs. In this study, it was determined if biochar, zeolite, vermiculite, peat and sand synergistically removed sulfamethoxazole (SMX) and dimethyl phthalate (DMP) as representatives of SAs and PAEs by using batch and column experiments. The batch experiments showed that pseudo-second-order and intraparticle diffusion kinetics and Freundlich isotherm could better describe the synergistic adsorption of SMX and DMP on each substrate. SMX promoted hydrophobic interaction between DMP and each substrate so that low concentration DMP almost was adsorbed completely at neutral pH. Both neutral and alkaline pH conditions were favorable for synergistic adsorption of SMX and DMP on each substrate. The column experiments showed that removal of SMX or DMP in VFCW by substrate adsorption alone was limited with run time increasing, but SMX and DMP were effectively removed with run time increasing when loaded with simulated wastewater, SMX and DMP. The VFCW not only removed 94.7% SMX and 91.8% DMP after running 50 d, but also improved total nitrogen removal. In conclusion, these results strongly suggest that biochar, zeolite, vermiculite, peat and sand filled in VFCW can synergistically remove SMX and DMP.


Asunto(s)
Sulfametoxazol , Zeolitas , Sulfametoxazol/química , Humedales , Arena , Suelo/química , Sulfanilamida , Adsorción
2.
Sci Rep ; 9(1): 2427, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787320

RESUMEN

To identify a vegetation configuration pattern with a high-efficiency purification ability for total nitrogen (TN), available nitrogen (AN), total phosphorous (TP), available phosphorous (AP), and chemical oxygen demand (COD) based on comprehensive assessment results, a water discharge experiment was performed in the Luan River in China with the following riparian forests: I, pure broad-leaved; II, mixed broad-leaved; III, mixed coniferous and broad-leaved; IV, mixed coniferous; and V, pure coniferous. From the riparian buffer zone to the river channel, the evaluation showed that pattern I had the highest purification ability at 1 m and 2 m; at a width of 4 m, pattern III had the highest purification ability; at a distance of 7 m, pattern V showed the highest purification ability; at 10 m, pattern IV showed the highest purification ability, pattern II the lowest. It is advisable to give priority to plant coniferous species from 0 m to 4 m from the river bank, while it is advisable to give priority to plant broad-leaved species from 4 m to 10 m from the river bank. We therefore recommend these vegetation configuration patterns in the development and management of runoff purification systems.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Nitrógeno/química , Fósforo/química , Purificación del Agua , China , Bosques , Humanos , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Plantas/genética , Ríos , Agua/química , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...