Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790784

RESUMEN

Tartronic acid is known for its potential to inhibit sugar-to-lipid conversion in the human body, leading to weight loss and fat reduction. This compound is predominantly found in cucumbers and other cucurbit crops. Therefore, cultivating cucumbers with high tartronic acid content holds significant health implications. In this study, we assessed the tartronic acid content in 52 cucumber germplasms with favorable overall traits and identified 8 cucumber germplasms with elevated tartronic acid levels. Our investigation into factors influencing cucumber tartronic acid revealed a decrease in content with fruit development from the day of flowering. Furthermore, tartronic acid content was higher in early-harvested fruits compared to late-harvested ones, with the rear part of the fruit exhibiting significantly higher content than other parts. Foliar spraying of microbial agents increased tartronic acid content by 84.4%. This study provides valuable resources for breeding high tartronic acid cucumbers and offers practical insights for optimizing cucumber production practices.

2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138999

RESUMEN

Pre-harvest sprouting (PHS), the germination of seeds on the plant prior to harvest, poses significant challenges to agriculture. It not only reduces seed and grain yield, but also impairs the commodity quality of the fruit, ultimately affecting the success of the subsequent crop cycle. A deeper understanding of PHS is essential for guiding future breeding strategies, mitigating its impact on seed production rates and the commercial quality of fruits. PHS is a complex phenomenon influenced by genetic, physiological, and environmental factors. Many of these factors exert their influence on PHS through the intricate regulation of plant hormones responsible for seed germination. While numerous genes related to PHS have been identified in food crops, the study of PHS in vegetable crops is still in its early stages. This review delves into the regulatory elements, functional genes, and recent research developments related to PHS in vegetable crops. Meanwhile, this paper presents a novel understanding of PHS, aiming to serve as a reference for the study of this trait in vegetable crops.


Asunto(s)
Fitomejoramiento , Verduras , Verduras/genética , Germinación/genética , Fenotipo , Semillas/genética
3.
Hortic Res ; 10(9): uhad145, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37691965

RESUMEN

Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.

4.
Sci Data ; 10(1): 270, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169805

RESUMEN

Artificially improving persimmon (Diospyros kaki Thunb.), one of the most important fruit trees, remains challenging owing to the lack of reference genomes. In this study, we generated an allele-aware chromosome-level genome assembly for the autohexaploid persimmon 'Xiaoguotianshi' (Chinese-PCNA type) using PacBio CCS and Hi-C technology. The final assembly contained 4.52 Gb, with a contig N50 value of 5.28 Mb and scaffold N50 value of 44.01 Mb, of which 4.06 Gb (89.87%) of the assembly were anchored onto 90 chromosome-level pseudomolecules comprising 15 homologous groups with 6 allelic chromosomes in each. A total of 153,288 protein-coding genes were predicted, of which 98.60% were functionally annotated. Repetitive sequences accounted for 64.02% of the genome; and 110,480 rRNAs, 12,297 tRNAs, 1,483 miRNAs, and 3,510 snRNA genes were also identified. This genome assembly fills the knowledge gap in the autohexaploid persimmon genome, which is conducive in the study on the regulatory mechanisms underlying the major economically advantageous traits of persimmons and promoting breeding programs.


Asunto(s)
Cromosomas de las Plantas , Diospyros , Genoma de Planta , Alelos , Diospyros/genética , Filogenia , Fitomejoramiento , Secuencias Repetitivas de Ácidos Nucleicos
5.
Hortic Res ; 10(5): uhad047, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37213683

RESUMEN

Fallopia multiflora (Thunb.) Harald, a vine belonging to the Polygonaceae family, is used in traditional medicine. The stilbenes contained in it have significant pharmacological activities in anti-oxidation and anti-aging. This study describes the assembly of the F. multiflora genome and presents its chromosome-level genome sequence containing 1.46 gigabases of data (with a contig N50 of 1.97 megabases), 1.44 gigabases of which was assigned to 11 pseudochromosomes. Comparative genomics confirmed that F. multiflora shared a whole-genome duplication event with Tartary buckwheat and then underwent different transposon evolution after separation. Combining genomics, transcriptomics, and metabolomics data to map a network of associated genes and metabolites, we identified two FmRS genes responsible for the catalysis of one molecule of p-coumaroyl-CoA and three molecules of malonyl-CoA to resveratrol in F. multiflora. These findings not only serve as the basis for revealing the stilbene biosynthetic pathway but will also contribute to the development of tools for increasing the production of bioactive stilbenes through molecular breeding in plants or metabolic engineering in microbes. Moreover, the reference genome of F. multiflora is a useful addition to the genomes of the Polygonaceae family.

6.
Nat Commun ; 14(1): 2021, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37037808

RESUMEN

Chrysanthemum (Chrysanthemum morifolium Ramat.) is a globally important ornamental plant with great economic, cultural, and symbolic value. However, research on chrysanthemum is challenging due to its complex genetic background. Here, we report a near-complete assembly and annotation for C. morifolium comprising 27 pseudochromosomes (8.15 Gb; scaffold N50 of 303.69 Mb). Comparative and evolutionary analyses reveal a whole-genome triplication (WGT) event shared by Chrysanthemum species approximately 6 million years ago (Mya) and the possible lineage-specific polyploidization of C. morifolium approximately 3 Mya. Multilevel evidence suggests that C. morifolium is likely a segmental allopolyploid. Furthermore, a combination of genomics and transcriptomics approaches demonstrate the C. morifolium genome can be used to identify genes underlying key ornamental traits. Phylogenetic analysis of CmCCD4a traces the flower colour breeding history of cultivated chrysanthemum. Genomic resources generated from this study could help to accelerate chrysanthemum genetic improvement.


Asunto(s)
Chrysanthemum , Chrysanthemum/genética , Filogenia , Fitomejoramiento , Perfilación de la Expresión Génica , Flores/genética , Cromosomas
7.
Nat Genet ; 55(3): 507-518, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864101

RESUMEN

Pearl millet is an important cereal crop worldwide and shows superior heat tolerance. Here, we developed a graph-based pan-genome by assembling ten chromosomal genomes with one existing assembly adapted to different climates worldwide and captured 424,085 genomic structural variations (SVs). Comparative genomics and transcriptomics analyses revealed the expansion of the RWP-RK transcription factor family and the involvement of endoplasmic reticulum (ER)-related genes in heat tolerance. The overexpression of one RWP-RK gene led to enhanced plant heat tolerance and transactivated ER-related genes quickly, supporting the important roles of RWP-RK transcription factors and ER system in heat tolerance. Furthermore, we found that some SVs affected the gene expression associated with heat tolerance and SVs surrounding ER-related genes shaped adaptation to heat tolerance during domestication in the population. Our study provides a comprehensive genomic resource revealing insights into heat tolerance and laying a foundation for generating more robust crops under the changing climate.


Asunto(s)
Pennisetum , Termotolerancia , Pennisetum/genética , Termotolerancia/genética , Adaptación Fisiológica/genética , Genómica , Perfilación de la Expresión Génica
8.
Proc Natl Acad Sci U S A ; 119(39): e2208496119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122204

RESUMEN

Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton, Gossypium ekmanianum [(AD)6, Ge] and Gossypium stephensii [(AD)7, Gs], and one early form of domesticated Gossypium hirsutum, race punctatum [(AD)1, Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploid Gossypium clade and resolved the evolutionary relationships of Gs, Ge, and domesticated G. hirsutum. We describe genomic structural variation that arose during Gossypium evolution and describe its correlates-including phenotypic differentiation, genetic isolation, and genetic convergence-that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimproved Ghp offers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.


Asunto(s)
Evolución Molecular , Genoma de Planta , Gossypium , Fibra de Algodón , Variación Genética/genética , Genoma de Planta/genética , Gossypium/clasificación , Gossypium/genética , Isomerasas/genética , Isomerasas/metabolismo , Tetraploidía
9.
Hortic Res ; 9: uhac146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072836

RESUMEN

Fruit glossiness is an important external fruit quality trait for fresh-consumed cucumber fruit, affecting its marketability. Dull fruit appearance is mainly controlled by a single gene, D (for dull fruit) that is dominant to glossy fruit (dd), but the molecular mechanism controlling fruit glossiness is unknown. In the present study, we conducted map-based cloning of the D locus in cucumber and identified a candidate gene (Csa5G577350) that encodes a C2H2-type zinc finger transcription factor, CsDULL. A 4895-bp deletion including the complete loss of CsDULL resulted in glossy fruit. CsDULL is highly expressed in the peel of cucumber fruit, and its expression level is positively correlated with the accumulation of cutin and wax in the peel. Through transcriptome analysis, yeast one-hybrid and dual-luciferase assays, we identified two genes potentially targeted by CsDULL for regulation of cutin and wax biosynthesis/transportation that included CsGPAT4 and CsLTPG1. The possibility that CsDULL controls both fruit glossiness and wart development in cucumber is discussed. The present work advances our understanding of regulatory mechanisms of fruit epidermal traits, and provides a useful tool for molecular breeding to improve external fruit quality in cucumber.

10.
Mol Ecol Resour ; 22(4): 1493-1507, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34758188

RESUMEN

Arctium lappa has a long medicinal and edible history with great economic importance. Here, the first high-quality chromosome-level draft genome of A. lappa was presented by the Illumina and PacBio sequencing data. The assembled genome was approximately 1.79 Gb with a N50 contig size of 6.88 Mb. Approximately 1.70 Gb (95.4%) of the contig sequences were anchored onto 18 chromosomes using Hi-C data; the scaffold N50 was improved to be 91.64 Mb. Furthermore, we obtained 1.12 Gb (68.46%) of repetitive sequences and 32,771 protein-coding genes; 616 positively selected candidate genes were identified. Among candidate genes related to lignan biosynthesis, the following were found to be highly correlated with the accumulation of arctiin: 4-coumarate-CoA ligase (4CL), dirigent protein (DIR), and hydroxycinnamoyl transferase (HCT). Additionally, we compared the transcriptomes of A. lappa roots at three different developmental stages and identified 8,943 differentially expressed genes (DEGs) in these tissues. These data can be utilized to identify genes related to A. lappa quality or provide a basis for molecular identification and comparative genomics among related species.


Asunto(s)
Arctium , Arctium/genética , Cromosomas , Genoma , Genoma de Planta , Filogenia , Plantas Comestibles
11.
Front Plant Sci ; 12: 776972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956272

RESUMEN

Maize (Zea mays L.) is a tropical crop, and low temperature has become one of the main abiotic stresses for maize growth and development, affecting many maize growth processes. The main area of maize production in China, Jilin province, often suffers from varying degrees of cold damage in spring, which seriously affects the quality and yield of maize. In the face of global climate change and food security concerns, discovering cold tolerance genes, developing cold tolerance molecular markers, and creating cold-tolerant germplasm have become urgent for improving maize resilience against these conditions and obtaining an increase in overall yield. In this study, whole-genome sequencing and genotyping by sequencing were used to perform genome-wide association analysis (GWAS) and quantitative trait locus (QTL) mapping of the two populations, respectively. Overall, four single-nucleotide polymorphisms (SNPs) and 12 QTLs were found to be significantly associated with cold tolerance. Through joint analysis, an intersection of GWAS and QTL mapping was found on chromosome 3, on which the Zm00001d002729 gene was identified as a potential factor in cold tolerance. We verified the function of this target gene through overexpression, suppression of expression, and genetic transformation into maize. We found that Zm00001d002729 overexpression resulted in better cold tolerance in this crop. The identification of genes associated with cold tolerance contributes to the clarification of the underlying mechanism of this trait in maize and provides a foundation for the adaptation of maize to colder environments in the future, to ensure food security.

12.
Plant Biotechnol J ; 19(3): 517-531, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32946650

RESUMEN

The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.


Asunto(s)
Ziziphus , China , Frutas/genética , Estudio de Asociación del Genoma Completo , Genómica , Ziziphus/genética
14.
Hortic Res ; 7(1): 89, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528701

RESUMEN

Jujube (Ziziphus jujuba Mill.) is an important perennial fruit tree with a range of interesting horticultural traits. It was domesticated from wild jujube (Ziziphus acidojujuba), but the genomic variation dynamics and genetic changes underlying its horticultural traits during domestication are poorly understood. Here, we report a comprehensive genome variation map based on the resequencing of 350 accessions, including wild, semi-wild and cultivated jujube plants, at a >15× depth. Using the combination of a genome-wide association study (GWAS) and selective sweep analysis, we identified several candidate genes potentially involved in regulating seven domestication traits in jujube. For fruit shape and kernel shape, we integrated the GWAS approach with transcriptome profiling data, expression analysis and the transgenic validation of a candidate gene to identify a causal gene, ZjFS3, which encodes an ethylene-responsive transcription factor. Similarly, we identified a candidate gene for bearing-shoot length and the number of leaves per bearing shoot and two candidate genes for the seed-setting rate using GWAS. In the selective sweep analysis, we also discovered several putative genes for the presence of prickles on bearing shoots and the postharvest shelf life of fleshy fruits. This study outlines the genetic basis of jujube domestication and evolution and provides a rich genomic resource for mining other horticulturally important genes in jujube.

15.
Nat Commun ; 11(1): 971, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080175

RESUMEN

Triptolide is a trace natural product of Tripterygium wilfordii. It has antitumor activities, particularly against pancreatic cancer cells. Identification of genes and elucidation of the biosynthetic pathway leading to triptolide are the prerequisite for heterologous bioproduction. Here, we report a reference-grade genome of T. wilfordii with a contig N50 of 4.36 Mb. We show that copy numbers of triptolide biosynthetic pathway genes are impacted by a recent whole-genome triplication event. We further integrate genomic, transcriptomic, and metabolomic data to map a gene-to-metabolite network. This leads to the identification of a cytochrome P450 (CYP728B70) that can catalyze oxidation of a methyl to the acid moiety of dehydroabietic acid in triptolide biosynthesis. We think the genomic resource and the candidate genes reported here set the foundation to fully reveal triptolide biosynthetic pathway and consequently the heterologous bioproduction.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Fenantrenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Abietanos/metabolismo , Antineoplásicos Fitogénicos/biosíntesis , Vías Biosintéticas/genética , Medicamentos Herbarios Chinos/metabolismo , Compuestos Epoxi/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Humanos , Ingeniería Metabólica , Metaboloma , Oxidación-Reducción , Filogenia , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
16.
Plant Biotechnol J ; 18(2): 373-388, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31276273

RESUMEN

Orchardgrass (Dactylis glomerata L.) is an important forage grass for cultivating livestock worldwide. Here, we report an ~1.84-Gb chromosome-scale diploid genome assembly of orchardgrass, with a contig N50 of 0.93 Mb, a scaffold N50 of 6.08 Mb and a super-scaffold N50 of 252.52 Mb, which is the first chromosome-scale assembled genome of a cool-season forage grass. The genome includes 40 088 protein-coding genes, and 69% of the assembled sequences are transposable elements, with long terminal repeats (LTRs) being the most abundant. The LTRretrotransposons may have been activated and expanded in the grass genome in response to environmental changes during the Pleistocene between 0 and 1 million years ago. Phylogenetic analysis reveals that orchardgrass diverged after rice but before three Triticeae species, and evolutionarily conserved chromosomes were detected by analysing ancient chromosome rearrangements in these grass species. We also resequenced the whole genome of 76 orchardgrass accessions and found that germplasm from Northern Europe and East Asia clustered together, likely due to the exchange of plants along the 'Silk Road' or other ancient trade routes connecting the East and West. Last, a combined transcriptome, quantitative genetic and bulk segregant analysis provided insights into the genetic network regulating flowering time in orchardgrass and revealed four main candidate genes controlling this trait. This chromosome-scale genome and the online database of orchardgrass developed here will facilitate the discovery of genes controlling agronomically important traits, stimulate genetic improvement of and functional genetic research on orchardgrass and provide comparative genetic resources for other forage grasses.


Asunto(s)
Dactylis , Evolución Molecular , Flores , Redes Reguladoras de Genes , Dactylis/genética , Flores/genética , Repeticiones de Microsatélite , Fenotipo , Filogenia
17.
Gigascience ; 8(5)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31049561

RESUMEN

BACKGROUND: Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits. RESULTS: We obtained >187.22 and 178.87 gigabases of sequence, and ∼288× and 248× genome coverage, to a pecan cultivar ("Pawnee") and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives. CONCLUSIONS: Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement.


Asunto(s)
Carya/genética , Evolución Molecular , Genoma de Planta/genética , Nueces/genética , Anotación de Secuencia Molecular , Filogenia
18.
BMC Plant Biol ; 19(1): 119, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30935381

RESUMEN

BACKGROUND: Sweetpotato (Ipomoea batatas (L.) Lam.) is the seventh most important crop in the world and is mainly cultivated for its underground storage root (SR). The genetic studies of this species have been hindered by a lack of high-quality reference sequence due to its complex genome structure. Diploid Ipomoea trifida is the closest relative and putative progenitor of sweetpotato, which is considered a model species for sweetpotato, including genetic, cytological, and physiological analyses. RESULTS: Here, we generated the chromosome-scale genome sequence of SR-forming diploid I. trifida var. Y22 with high heterozygosity (2.20%). Although the chromosome-based synteny analysis revealed that the I. trifida shared conserved karyotype with Ipomoea nil after the separation, I. trifida had a much smaller genome than I. nil due to more efficient eliminations of LTR-retrotransposons and lack of species-specific amplification bursts of LTR-RTs. A comparison with four non-SR-forming species showed that the evolution of the beta-amylase gene family may be related to SR formation. We further investigated the relationship of the key gene BMY11 (with identity 47.12% to beta-amylase 1) with this important agronomic trait by both gene expression profiling and quantitative trait locus (QTL) mapping. And combining SR morphology and structure, gene expression profiling and qPCR results, we deduced that the products of the activity of BMY11 in splitting starch granules and be recycled to synthesize larger granules, contributing to starch accumulation and SR swelling. Moreover, we found the expression pattern of BMY11, sporamin proteins and the key genes involved in carbohydrate metabolism and stele lignification were similar to that of sweetpotato during the SR development. CONCLUSIONS: We constructed the high-quality genome reference of the highly heterozygous I. trifida through a combined approach and this genome enables a better resolution of the genomics feature and genome evolutions of this species. Sweetpotato SR development genes can be identified in I. trifida and these genes perform similar functions and patterns, showed that the diploid I. trifida var. Y22 with typical SR could be considered an ideal model for the studies of sweetpotato SR development.


Asunto(s)
Genoma de Planta/genética , Ipomoea batatas/genética , Perfilación de la Expresión Génica , Genómica , Ipomoea batatas/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...