Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 2(17)2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28878120

RESUMEN

The oncoprotein Mdm2 is a RING domain-containing E3 ubiquitin ligase that ubiquitinates G protein-coupled receptor kinase 2 (GRK2) and ß-arrestin2, thereby regulating ß-adrenergic receptor (ßAR) signaling and endocytosis. Previous studies showed that cardiac Mdm2 expression is critical for controlling p53-dependent apoptosis during early embryonic development, but the role of Mdm2 in the developed adult heart is unknown. We aimed to identify if Mdm2 affects ßAR signaling and cardiac function in adult mice. Using Mdm2/p53-KO mice, which survive for 9-12 months, we identified a critical and potentially novel role for Mdm2 in the adult mouse heart through its regulation of cardiac ß1AR signaling. While baseline cardiac function was mostly similar in both Mdm2/p53-KO and wild-type (WT) mice, isoproterenol-induced cardiac contractility in Mdm2/p53-KO was significantly blunted compared with WT mice. Isoproterenol increased cAMP in left ventricles of WT but not of Mdm2/p53-KO mice. Additionally, while basal and forskolin-induced calcium handling in isolated Mdm2/p53-KO and WT cardiomyocytes were equivalent, isoproterenol-induced calcium handling in Mdm2/p53-KO was impaired. Mdm2/p53-KO hearts expressed 2-fold more GRK2 than WT. GRK2 polyubiquitination via lysine-48 linkages was significantly reduced in Mdm2/p53-KO hearts. Tamoxifen-inducible cardiomyocyte-specific deletion of Mdm2 in adult mice also led to a significant increase in GRK2, and resulted in severely impaired cardiac function, high mortality, and no detectable ßAR responsiveness. Gene delivery of either Mdm2 or GRK2-CT in vivo using adeno-associated virus 9 (AAV9) effectively rescued ß1AR-induced cardiac contractility in Mdm2/p53-KO. These findings reveal a critical p53-independent physiological role of Mdm2 in adult hearts, namely, regulation of GRK2-mediated desensitization of ßAR signaling.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Contracción Miocárdica/fisiología , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Agonistas Adrenérgicos beta/farmacología , Animales , Ecocardiografía , Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Corazón/diagnóstico por imagen , Corazón/fisiología , Hemodinámica/efectos de los fármacos , Isoproterenol/farmacología , Ratones , Ratones Noqueados , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
2.
Arterioscler Thromb Vasc Biol ; 36(5): 984-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27013612

RESUMEN

OBJECTIVE: Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton. APPROACH AND RESULTS: Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer. CONCLUSIONS: Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima , Neuropéptidos/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Genotipo , Proteínas de Andamiaje Homer/metabolismo , Humanos , Hiperplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neuropéptidos/deficiencia , Neuropéptidos/genética , Fenotipo , Unión Proteica , Transducción de Señal , Transfección , Canales de Potencial de Receptor Transitorio/metabolismo , Remodelación Vascular
3.
Mol Cell Biol ; 32(15): 3009-17, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22645307

RESUMEN

Immediately after birth, skeletal muscle must undergo an enormous period of growth and differentiation that is coordinated by several intertwined growth signaling pathways. How these pathways are integrated remains unclear but is likely to involve skeletal muscle contractile activity and calcium (Ca(2+)) signaling. Here, we show that Ca(2+) signaling governed by stromal interaction molecule 1 (STIM1) plays a central role in the integration of signaling and, therefore, muscle growth and differentiation. Conditional deletion of STIM1 from the skeletal muscle of mice (mSTIM1(-/-) mice) leads to profound growth delay, reduced myonuclear proliferation, and perinatal lethality. We show that muscle fibers of neonatal mSTIM1(-/-) mice cannot support the activity-dependent Ca(2+) transients evoked by tonic neurostimulation, even though excitation contraction coupling (ECC) remains unperturbed. In addition, disruption of tonic Ca(2+) signaling in muscle fibers attenuates downstream muscle growth signaling, such as that of calcineurin, mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AKT. Based on our findings, we propose a model wherein STIM1-mediated store-operated calcium entry (SOCE) governs the Ca(2+) signaling required for cellular processes that are necessary for neonatal muscle growth and differentiation.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/genética , Glicoproteínas de Membrana/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/fisiología , Calcio/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Sistema de Señalización de MAP Quinasas , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/crecimiento & desarrollo , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Molécula de Interacción Estromal 1 , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
PLoS One ; 6(10): e26128, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22043307

RESUMEN

Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G). Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress.


Asunto(s)
Proteínas Portadoras , Estrés Oxidativo , Animales , Línea Celular , Disulfuros , Proteínas de Andamiaje Homer , Humanos , Ratones , Enfermedades Musculares/etiología , Mutación , Miofibrillas/patología , Enfermedades Neurodegenerativas/etiología , Polimerizacion , Isoformas de Proteínas , Solubilidad
5.
J Am Soc Nephrol ; 22(3): 526-35, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21258036

RESUMEN

Mutations in the canonical transient receptor potential cation channel 6 (TRPC6) are responsible for familial forms of adult onset focal segmental glomerulosclerosis (FSGS). The mechanisms by which TRPC6 mutations cause kidney disease are not well understood. We used TRPC6-deficient mice to examine the function of TRPC6 in the kidney. We found that adult TRPC6-deficient mice had BP and albumin excretion rates similar to wild-type animals. Glomerular histomorphology revealed no abnormalities on both light and electron microscopy. To determine whether the absence of TRPC6 would alter susceptibility to hypertension and renal injury, we infused mice with angiotensin II continuously for 28 days. Although both groups developed similar levels of hypertension, TRPC6-deficient mice had significantly less albuminuria, especially during the early phase of the infusion; this suggested that TRPC6 adversely influences the glomerular filter. We used whole-cell patch-clamp recording to measure cell-membrane currents in primary cultures of podocytes from both wild-type and TRPC6-deficient mice. In podocytes from wild-type mice, angiotensin II and a direct activator of TRPC6 both augmented cell-membrane currents; TRPC6 deficiency abrogated these increases in current magnitude. Our findings suggest that TRPC6 promotes albuminuria, perhaps by promoting angiotensin II-dependent increases in Ca(2+), suggesting that TRPC6 blockade may be therapeutically beneficial in proteinuric kidney disease.


Asunto(s)
Albuminuria/metabolismo , Angiotensina II/efectos adversos , Riñón/metabolismo , Canales Catiónicos TRPC/metabolismo , Albuminuria/etiología , Albuminuria/fisiopatología , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Inyecciones Subcutáneas , Riñón/efectos de los fármacos , Riñón/fisiopatología , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
6.
Circ Res ; 105(10): 1023-30, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19797170

RESUMEN

RATIONALE: Cardiac muscle adapts to increase workload by altering cardiomyocyte size and function resulting in cardiac hypertrophy. G protein-coupled receptor signaling is known to govern the hypertrophic response through the regulation of ion channel activity and downstream signaling in failing cardiomyocytes. OBJECTIVE: Transient receptor potential canonical (TRPC) channels are G protein-coupled receptor operated channels previously implicated in cardiac hypertrophy. Our objective of this study is to better understand how TRPC channels influence cardiomyocyte calcium signaling. METHODS AND RESULTS: Here, we used whole cell patch clamp of adult cardiomyocytes to show upregulation of a nonselective cation current reminiscent of TRPC channels subjected to pressure overload. This TRPC current corresponds to the increased TRPC channel expression noted in hearts of mice subjected to pressure overload. Importantly, we show that mice lacking TRPC1 channels are missing this putative TRPC current. Moreover, Trpc1(-)(/)(-) mice fail to manifest evidence of maladaptive cardiac hypertrophy and maintain preserved cardiac function when subjected to hemodynamic stress and neurohormonal excess. In addition, we provide a mechanistic basis for the protection conferred to Trpc1(-)(/)(-) mice as mechanosensitive signaling through calcineurin/NFAT, mTOR and Akt is altered in Trpc1(-)(/)(-) mice. CONCLUSIONS: From these studies, we suggest that TRPC1 channels are critical for the adaptation to biomechanical stress and TRPC dysregulation leads to maladaptive cardiac hypertrophy and failure.


Asunto(s)
Señalización del Calcio , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Estrés Fisiológico , Canales Catiónicos TRPC/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Cardiomegalia/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Insuficiencia Cardíaca/genética , Mecanotransducción Celular/genética , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR , Canales Catiónicos TRPC/genética
7.
Nat Cell Biol ; 10(6): 688-97, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18488020

RESUMEN

It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. However, little is known about STIM1 in excitable cells, such as striated muscle, where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to show SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide insight into the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.


Asunto(s)
Calcio/metabolismo , Glicoproteínas de Membrana/fisiología , Animales , Canales de Calcio/metabolismo , Señalización del Calcio , Línea Celular , Silenciador del Gen , Glicoproteínas de Membrana/metabolismo , Ratones , Modelos Biológicos , Modelos Genéticos , Contracción Muscular , Músculos/metabolismo , Técnicas de Placa-Clamp , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Molécula de Interacción Estromal 1
8.
Mol Cell Biol ; 28(8): 2637-47, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18268005

RESUMEN

Transient receptor potential (TRP) channels are nonselective cation channels, several of which are expressed in striated muscle. Because the scaffolding protein Homer 1 has been implicated in TRP channel regulation, we hypothesized that Homer proteins play a significant role in skeletal muscle function. Mice lacking Homer 1 exhibited a myopathy characterized by decreased muscle fiber cross-sectional area and decreased skeletal muscle force generation. Homer 1 knockout myotubes displayed increased basal current density and spontaneous cation influx. This spontaneous cation influx in Homer 1 knockout myotubes was blocked by reexpression of Homer 1b, but not Homer 1a, and by gene silencing of TRPC1. Moreover, diminished Homer 1 expression in mouse models of Duchenne's muscular dystrophy suggests that loss of Homer 1 scaffolding of TRP channels may contribute to the increased stretch-activated channel activity observed in mdx myofibers. These findings provide direct evidence that Homer 1 functions as an important scaffold for TRP channels and regulates mechanotransduction in skeletal muscle.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Eliminación de Gen , Distrofias Musculares/fisiopatología , Canales Catiónicos TRPC/metabolismo , Animales , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Proteínas de Andamiaje Homer , Ratones , Ratones Noqueados , Contracción Muscular , Distrofias Musculares/genética , Distrofias Musculares/patología , Unión Proteica , Canales Catiónicos TRPC/genética
9.
Am J Physiol Heart Circ Physiol ; 292(1): H399-407, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16877553

RESUMEN

Some mutations of the sodium channel gene Na(V1.5) are multifunctional, causing combinations of LQTS, Brugada syndrome and progressive cardiac conduction system disease (PCCD). The combination of Brugada syndrome and PCCD is uncommon, although they both result from a reduction in the sodium current. We hypothesize that slow conduction is sufficient to cause S-T segment elevation and undertook a combined experimental and theoretical study to determine whether conduction slowing alone can produce the Brugada phenotype. Deletion of lysine 1479 in one of two positively charged clusters in the III/IV inter-domain linker causes both syndromes. We have examined the functional effects of this mutation using heterologous expression of the wild-type and mutant sodium channel in HEK-293-EBNA cells. We show that DeltaK1479 shifts the potential of half-activation, V(1/2m), to more positive potentials (V(1/2m) = -36.8 +/- 0.8 and -24.5 +/- 1.3 mV for the wild-type and DeltaK1479 mutant respectively, n = 11, 10). The depolarizing shift increases the extent of depolarization required for activation. The potential of half-inactivation, V(1/2h), is also shifted to more positive potentials (V(1/2h) = -85 +/- 1.1 and -79.4 +/- 1.2 mV for wild-type and DeltaK1479 mutant respectively), increasing the fraction of channels available for activation. These shifts are quantitatively the same as a mutation that produces PCCD only, G514C. We incorporated experimentally derived parameters into a model of the cardiac action potential and its propagation in a one dimensional cable (simulating endo-, mid-myocardial and epicardial regions). The simulations show that action potential and ECG changes consistent with Brugada syndrome may result from conduction slowing alone; marked repolarization heterogeneity is not required. The findings also suggest how Brugada syndrome and PCCD which both result from loss of sodium channel function are sometimes present alone and at other times in combination.


Asunto(s)
Síndrome de Brugada/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Activación del Canal Iónico , Riñón/fisiopatología , Modelos Cardiovasculares , Proteínas Musculares/metabolismo , Síndromes de Preexcitación/fisiopatología , Canales de Sodio/metabolismo , Potenciales de Acción , Línea Celular , Simulación por Computador , Humanos , Cinética , Proteínas Musculares/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Sodio/genética , Relación Estructura-Actividad
10.
J Biol Chem ; 281(40): 30143-51, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16891657

RESUMEN

Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.


Asunto(s)
Bronquios/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Secuencia de Aminoácidos , Animales , Bronquios/efectos de los fármacos , Canales de Calcio/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/fisiología , Células Cultivadas , Masculino , Datos de Secuencia Molecular , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Ratas , Ratas Wistar , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología
11.
J Pharmacol Exp Ther ; 315(3): 1203-11, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16135702

RESUMEN

beta3-adrenergic receptors (AR) have recently been identified in mammalian hearts and shown to be up-regulated in heart failure (HF). beta3-AR stimulation reduces inotropic response associated with an inhibition of L-type Ca2+ channels in normal hearts; however, the effects of beta3-AR activation on Ca2+ channel in HF remain unknown. We compared the effects of beta(3)-AR activation on L-type Ca2+ current (ICa,L) in isolated left ventricular myocytes obtained from normal and age-matched rats with isoproterenol (ISO)-induced HF (4 months after 340 mg/kg s.c. for 2 days). ICa,L was measured using whole-cell voltage clamp and perforated-patch recording techniques. In normal myocytes, superfusion of 4-[-[2-hydroxy-(3-chlorophenyl)ethylamino]propyl]phenoxyacetate (BRL-37,344; BRL), a beta3-AR agonist, caused a dose-dependent decrease in ICa,L with maximal inhibition (21%, 1.1 +/- 0.2 versus 1.4 +/- 0.1 nA) (p < 0.01) at 10(-7) M. In HF myocytes, the same concentration of BRL produced a proportionately greater inhibition (31%) in ICa,L (1.1 +/- 0.2 versus 1.6 +/- 0.2 nA) (p < 0.05). A similar inhibition of ICa,L was also observed with ISO (10(-7) M) in the presence of a beta1- and beta2-AR antagonist, nadolol (10(-5) M). Inhibition was abolished by the beta3-AR antagonist (S)-N-[4-[2-[[3-[3-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]ethyl]phenyl]benzenesulfonamide (L-748,337; 10(-6) M), but not by nadolol. The inhibitory effect of BRL was attenuated by a nitric-oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (10(-4) M), and was prevented by the incubation of myocytes with pertussis toxin (PTX; 2 microg/ml, 36 degrees C, 6 h). In conclusion, beta3-AR activation inhibits L-type Ca2+ channel in both normal and HF myocytes. In HF, beta3-AR stimulation-induced inhibition of Ca2+ channel is enhanced. These effects are likely coupled with PTX-sensitive G-protein and partially mediated through a NOS-dependent pathway.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Insuficiencia Cardíaca/fisiopatología , Corazón/efectos de los fármacos , Receptores Adrenérgicos beta 3/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Animales , Canales de Calcio Tipo L/fisiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Corazón/fisiología , Insuficiencia Cardíaca/inducido químicamente , Ventrículos Cardíacos/citología , Isoproterenol/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta 3/fisiología
12.
Am J Physiol Heart Circ Physiol ; 288(2): H914-22, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15486041

RESUMEN

The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown. We assessed the effects of LSM on left ventricular (LV) dynamics at rest and during Ex in eight conscious, instrumented dogs with pacing-induced CHF. After CHF, with dogs at rest, LSM decreased arterial elastance (Ea) and increased LV contractile performance as assessed by the slope of LV pressure-volume (P-V) relation. LSM caused a >60% increase in the peak rate of mitral flow (dV/dtmax) due to decreases in minimal LV pressure and the time constant of LV relaxation (tau). LV arterial coupling, quantified as the ratio of end-systolic elastance (Ees) to Ea, was increased from 0.47 to 0.85%. LV mechanical efficiency, determined as the ratio of stroke work to total P-V area, was improved from 0.54 +/- 0.09 to 0.61 +/- 0.07. These beneficial effects persisted during Ex after CHF. Compared with CHF Ex dogs, treatment with LSM prevented Ex-induced abnormal increases in mean left atrial pressure and end-diastolic pressure and decreased Ees/Ea. With LSM treatment during CHF Ex, the early diastolic portion of the LV P-V loop was shifted downward with decreased minimal LV pressure and tau values and a further augmented dV/dtmax. Ees/Ea improved, and mechanical efficiency further increased from 0.61 +/- 0.07 to 0.67 +/- 0.07, which was close to the value reached during normal Ex. After CHF, LSM produced arterial vasodilatation; improved LV relaxation and diastolic filling; increased contractility, LV arterial coupling, and mechanical efficiency; and normalized the response to Ex.


Asunto(s)
Cardiotónicos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Hidrazonas/farmacología , Esfuerzo Físico/fisiología , Piridazinas/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Animales , Diástole/efectos de los fármacos , Perros , Insuficiencia Cardíaca/fisiopatología , Marcapaso Artificial , Descanso/fisiología , Simendán , Sístole/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA