Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37761562

RESUMEN

Hypergraphs have become an accurate and natural expression of high-order coupling relationships in complex systems. However, applying high-order information from networks to vital node identification tasks still poses significant challenges. This paper proposes a von Neumann entropy-based hypergraph vital node identification method (HVC) that integrates high-order information as well as its optimized version (semi-SAVC). HVC is based on the high-order line graph structure of hypergraphs and measures changes in network complexity using von Neumann entropy. It integrates s-line graph information to quantify node importance in the hypergraph by mapping hyperedges to nodes. In contrast, semi-SAVC uses a quadratic approximation of von Neumann entropy to measure network complexity and considers only half of the maximum order of the hypergraph's s-line graph to balance accuracy and efficiency. Compared to the baseline methods of hyperdegree centrality, closeness centrality, vector centrality, and sub-hypergraph centrality, the new methods demonstrated superior identification of vital nodes that promote the maximum influence and maintain network connectivity in empirical hypergraph data, considering the influence and robustness factors. The correlation and monotonicity of the identification results were quantitatively analyzed and comprehensive experimental results demonstrate the superiority of the new methods. At the same time, a key non-trivial phenomenon was discovered: influence does not increase linearly as the s-line graph orders increase. We call this the saturation effect of high-order line graph information in hypergraph node identification. When the order reaches its saturation value, the addition of high-order information often acts as noise and affects propagation.

2.
Nonlinear Dyn ; : 1-20, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37361005

RESUMEN

This study aims at modeling the universal failure in preventing the outbreak of COVID-19 via real-world data from the perspective of complexity and network science. Through formalizing information heterogeneity and government intervention in the coupled dynamics of epidemic and infodemic spreading, first, we find that information heterogeneity and its induced variation in human responses significantly increase the complexity of the government intervention decision. The complexity results in a dilemma between the socially optimal intervention that is risky for the government and the privately optimal intervention that is safer for the government but harmful to the social welfare. Second, via counterfactual analysis against the COVID-19 crisis in Wuhan, 2020, we find that the intervention dilemma becomes even worse if the initial decision time and the decision horizon vary. In the short horizon, both socially and privately optimal interventions agree with each other and require blocking the spread of all COVID-19-related information, leading to a negligible infection ratio 30 days after the initial reporting time. However, if the time horizon is prolonged to 180 days, only the privately optimal intervention requires information blocking, which would induce a catastrophically higher infection ratio than that in the counterfactual world where the socially optimal intervention encourages early-stage information spread. These findings contribute to the literature by revealing the complexity incurred by the coupled infodemic-epidemic dynamics and information heterogeneity to the governmental intervention decision, which also sheds insight into the design of an effective early warning system against the epidemic crisis in the future.

3.
iScience ; 25(6): 104446, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35677641

RESUMEN

Quantifying structural dissimilarities between networks is a fundamental and challenging problem in network science. Previous network comparison methods are based on the structural features, such as the length of shortest path and degree, which only contain part of the topological information. Therefore, we propose an efficient network comparison method based on network embedding, which considers the global structural information. In detail, we first construct a distance matrix for each network based on the distances between node embedding vectors derived from DeepWalk. Then, we define the dissimilarity between two networks based on Jensen-Shannon divergence of the distance distributions. Experiments on both synthetic and empirical networks show that our method outperforms the baseline methods and can distinguish networks well. In addition, we show that our method can capture network properties, e.g., average shortest path length and link density. Moreover, the experiment of modularity further implies the functionality of our method.

4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2231-2240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33656997

RESUMEN

With the advances in gene sequencing technologies, millions of somatic mutations have been reported in the past decades, but mining cancer driver genes with oncogenic mutations from these data remains a critical and challenging area of research. In this study, we proposed a network-based classification method for identifying cancer driver genes with merging the multi-biological information. In this method, we construct a cancer specific genetic network from the human protein-protein interactome (PPI) to mine the network structure attributes, and combine biological information such as mutation frequency and differential expression of genes to achieve accurate prediction of cancer driver genes. Across seven different cancer types, the proposed algorithm always achieves high prediction accuracy, which is superior to the existing advanced methods. In the analysis of the predicted results, about 40 percent of the top 10 candidate genes overlap with the Cancer Gene Census database. Interestingly, the feature comparison indicates that the network based features are still more important than the biological features, including the mutation frequency and genetic differential expression. Further analyses also show that the integration of network structure attributes and biological information is valuable for predicting new cancer driver genes.


Asunto(s)
Neoplasias , Mapas de Interacción de Proteínas , Algoritmos , Redes Reguladoras de Genes/genética , Humanos , Mutación/genética , Neoplasias/genética , Mapas de Interacción de Proteínas/genética
5.
Bioinformatics ; 37(1): 82-88, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33416857

RESUMEN

MOTIVATION: Tumor stratification has a wide range of biomedical and clinical applications, including diagnosis, prognosis and personalized treatment. However, cancer is always driven by the combination of mutated genes, which are highly heterogeneous across patients. Accurately subdividing the tumors into subtypes is challenging. RESULTS: We developed a network-embedding based stratification (NES) methodology to identify clinically relevant patient subtypes from large-scale patients' somatic mutation profiles. The central hypothesis of NES is that two tumors would be classified into the same subtypes if their somatic mutated genes located in the similar network regions of the human interactome. We encoded the genes on the human protein-protein interactome with a network embedding approach and constructed the patients' vectors by integrating the somatic mutation profiles of 7344 tumor exomes across 15 cancer types. We firstly adopted the lightGBM classification algorithm to train the patients' vectors. The AUC value is around 0.89 in the prediction of the patient's cancer type and around 0.78 in the prediction of the tumor stage within a specific cancer type. The high classification accuracy suggests that network embedding-based patients' features are reliable for dividing the patients. We conclude that we can cluster patients with a specific cancer type into several subtypes by using an unsupervised clustering algorithm to learn the patients' vectors. Among the 15 cancer types, the new patient clusters (subtypes) identified by the NES are significantly correlated with patient survival across 12 cancer types. In summary, this study offers a powerful network-based deep learning methodology for personalized cancer medicine. AVAILABILITY AND IMPLEMENTATION: Source code and data can be downloaded from https://github.com/ChengF-Lab/NES. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

6.
Math Biosci Eng ; 17(4): 3710-3720, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32987551

RESUMEN

Since December 2019, an outbreak of a novel coronavirus pneumonia (WHO named COVID-19) swept across China. In Shanxi Province, the cumulative confirmed cases finally reached 133 since the first confirmed case appeared on January 22, 2020, and most of which were imported cases from Hubei Province. Reasons for this ongoing surge in Shanxi province, both imported and autochthonous infected cases, are currently unclear and demand urgent investigation. In this paper, we developed a SEIQR difference-equation model of COVID-19 that took into account the transmission with discrete time imported cases, to perform assessment and risk analysis. Our findings suggest that if the lock-down date in Wuhan is earlier, the infectious cases are fewer. Moreover, we reveal the effects of city lock-down date on the final scale of cases: if the date is advanced two days, the cases may decrease one half (67, 95% CI: 66-68); if the date is delayed for two days, the cases may reach about 196 (95% CI: 193-199). Our investigation model could be potentially helpful to study the transmission of COVID-19, in other provinces of China except Hubei. Especially, the method may also be used in countries with the first confirmed case is imported.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/transmisión , Modelos Biológicos , Pandemias , Neumonía Viral/transmisión , Número Básico de Reproducción/estadística & datos numéricos , COVID-19 , China/epidemiología , Simulación por Computador , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Humanos , Cadenas de Markov , Conceptos Matemáticos , Método de Montecarlo , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/estadística & datos numéricos , SARS-CoV-2 , Factores de Tiempo , Viaje/estadística & datos numéricos
7.
Cereb Cortex ; 30(9): 4771-4789, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32313935

RESUMEN

As a substrate for function, large-scale brain structural networks are crucial for fundamental and systems-level understanding of primate brains. However, it is challenging to acquire a complete primate whole-brain structural connectome using track tracing techniques. Here, we acquired a weighted brain structural network across 91 cortical regions of a whole macaque brain hemisphere with a connectivity density of 59% by predicting missing links from the CoCoMac-based binary network with a low density of 26.3%. The prediction model combines three factors, including spatial proximity, topological similarity, and cytoarchitectural similarity-to predict missing links and assign connection weights. The model was tested on a recently obtained high connectivity density yet partial-coverage experimental weighted network connecting 91 sources to 29 target regions; the model showed a prediction sensitivity of 74.1% in the predicted network. This predicted macaque hemisphere-wide weighted network has module segregation closely matching functional domains. Interestingly, the areas that act as integrators linking the segregated modules are mainly distributed in the frontoparietal network and correspond to the regions with large wiring costs in the predicted weighted network. This predicted weighted network provides a high-density structural dataset for further exploration of relationships between structure, function, and metabolism in the primate brain.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Modelos Neurológicos , Animales , Macaca
8.
Am J Trop Med Hyg ; 101(2): 310-318, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31219001

RESUMEN

Acute diarrhea is an important public health issue. Here, we focused on the differences of enteropathogens in acute diarrhea between urban and rural areas in southeast China. Laboratory- and sentinel-based surveillance of acute diarrhea (≥ 3 loose or liquid stools/24 hours) was conducted at 16 hospitals. Fecal specimens were tested for bacterial (Aeromonas sp., Campylobacter sp., diarrheagenic Escherichia coli, Plesiomonas shigelloides, non-typhoidal Salmonella, Shigella sp., Vibrio sp., and Yersinia sp.) and viral (adenovirus, astrovirus, Norovirus, Rotavirus, and Sapovirus) pathogens. Descriptive statistics were used. Between January 1, 2010, and December 31, 2014, 4,548 outpatients with acute diarrhea were enrolled (urban, n = 3,220; rural, n = 1,328). Pathogens were identified in 2,074 (45.6%) patients. Norovirus (25.7%), Vibrio parahaemolyticus (10.2%), enteroaggregative Escherichia coli (EAEC) (8.8%), group A Rotavirus (7.0%), and enterotoxigenic Escherichia coli (ETEC) (5.6%) were the most common pathogens. Enteropathogens were less common in urban than in rural areas (42.0% versus 54.4%, P < 0.001). In urban areas, EAEC and ETEC were more common in high-income than in middle-income regions. Interventions targeting the most common enteropathogens can substantially reduce the burden of acute diarrhea in southeast China.


Asunto(s)
Diarrea/epidemiología , Pacientes Ambulatorios/estadística & datos numéricos , Población Rural/estadística & datos numéricos , Población Urbana/estadística & datos numéricos , Enfermedad Aguda , Adolescente , Adulto , Anciano , Infecciones Bacterianas/epidemiología , Niño , Preescolar , China/epidemiología , Diarrea/microbiología , Diarrea/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Vigilancia de Guardia , Virosis/epidemiología , Adulto Joven
9.
Chaos ; 29(3): 033116, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927861

RESUMEN

Many systems are dynamic and time-varying in the real world. Discovering the vital nodes in temporal networks is more challenging than that in static networks. In this study, we proposed a temporal information gathering (TIG) process for temporal networks. The TIG-process, as a node's importance metric, can be used to do the node ranking. As a framework, the TIG-process can be applied to explore the impact of temporal information on the significance of the nodes. The key point of the TIG-process is that nodes' importance relies on the importance of its neighborhood. There are four variables: temporal information gathering depth n, temporal distance matrix D, initial information c, and weighting function f. We observed that the TIG-process can degenerate to classic metrics by a proper combination of these four variables. Furthermore, the fastest arrival distance based TIG-process ( fad-tig) is performed optimally in quantifying nodes' efficiency and nodes' spreading influence. Moreover, for the fad-tig process, we can find an optimal gathering depth n that makes the TIG-process perform optimally when n is small.

10.
Chaos ; 28(3): 033113, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29604627

RESUMEN

Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e., either extremely fast or slow, depending on the individual events. To understand its mechanism, we present a susceptible-accepted-recovered model with both information sensitivity and social reinforcement. Numerical simulations show that the model can reproduce the main spreading patterns of the six typical events. By this model, we further reveal that the spreading can be speeded up by increasing either the strength of information sensitivity or social reinforcement. Depending on the transmission probability and information sensitivity, the final accepted size can change from continuous to discontinuous transition when the strength of the social reinforcement is large. Moreover, an edge-based compartmental theory is presented to explain the numerical results. These findings may be of significance on the control of information spreading in modern society.

11.
Appl Math Comput ; 332: 437-448, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32287501

RESUMEN

The interaction between disease and disease information on complex networks has facilitated an interdisciplinary research area. When a disease begins to spread in the population, the corresponding information would also be transmitted among individuals, which in turn influence the spreading pattern of the disease. In this paper, firstly, we analyze the propagation of two representative diseases (H7N9 and Dengue fever) in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes. Secondly, inspired by empirical analyses, we propose a nonlinear model to further interpret the coupling effect based on the SIS (Susceptible-Infected-Susceptible) model. Both simulation results and theoretical analysis show that a high prevalence of epidemic will lead to a slow information decay, consequently resulting in a high infected level, which shall in turn prevent the epidemic spreading. Finally, further theoretical analysis demonstrates that a multi-outbreak phenomenon emerges via the effect of coupling dynamics, which finds good agreement with empirical results. This work may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.

12.
Chaos Solitons Fractals ; 108: 196-204, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32288352

RESUMEN

Research on the interplay between the dynamics on the network and the dynamics of the network has attracted much attention in recent years. In this work, we propose an information-driven adaptive model, where disease and disease information can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice as well as on a real-world network give visual representations about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, a continuous dynamic behavior, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects human activities on responding to epidemic spreading.

14.
Infect Dis Poverty ; 5(1): 65, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27349745

RESUMEN

BACKGROUND: The elimination of malaria requires high-quality surveillance data to enable rapid detection and response to individual cases. Evaluation of the performance of a national malaria surveillance system could identify shortcomings which, if addressed, will improve the surveillance program for malaria elimination. METHODS: Case-level data for the period 2005-2014 were extracted from the China National Notifiable Infectious Disease Reporting Information System and Malaria Enhanced Surveillance Information System. The occurrence of cases, accuracy and timeliness of case diagnosis, reporting and investigation, were assessed and compared between the malaria control stage (2005-2010) and elimination stage (2011-2014) in mainland China. RESULTS: A total of 210 730 malaria cases were reported in mainland China in 2005-2014. The average annual incidence declined dramatically from 2.5 per 100 000 people at the control stage to 0.2 per 100 000 at the elimination stage, but the proportion of migrant cases increased from 9.8 % to 41.0 %. Since the initiation of the National Malaria Elimination Programme in 2010, the overall proportion of cases diagnosed by laboratory testing consistently improved, with the highest of 99.0 % in 2014. However, this proportion was significantly lower in non-endemic provinces (79.0 %) than that in endemic provinces (91.4 %) during 2011-2014. The median interval from illness onset to diagnosis was 3 days at the elimination stage, with one day earlier than that at the control stage. Since 2011, more than 99 % cases were reported within 1 day after being diagnosed, while the proportion of cases that were reported within one day after diagnosis was lowest in Tibet (37.5 %). The predominant source of cases reporting shifted from town-level hospitals at the control stage (67.9 % cases) to city-level hospitals and public health institutes at the eliminate stage (69.4 % cases). The proportion of investigation within 3 days after case reporting has improved, from 74.6 % in 2010 to 98.5 % in 2014. CONCLUSIONS: The individual case-based malaria surveillance system in China operated well during the malaria elimination stage. This ensured that malaria cases could be diagnosed, reported and timely investigated at local level. However, domestic migrants and overseas populations, as well as cases in the historically malarial non-endemic areas and hard-to-reach area are new challenges in the surveillance for malaria elimination.


Asunto(s)
Malaria/epidemiología , Malaria/prevención & control , China/epidemiología , Notificación de Enfermedades , Humanos , Incidencia , Malaria/parasitología , Plasmodium/fisiología
15.
PLoS One ; 9(12): e113457, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25479013

RESUMEN

As one of the major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, the so-called item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. Interestingly, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely, these new items will have more chance to appear in other users' recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs.


Asunto(s)
Promoción de la Salud/economía , Mercadotecnía , Programas Informáticos , Algoritmos , Computadores , Interpretación Estadística de Datos , Humanos , Internet
16.
ScientificWorldJournal ; 2014: 829137, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147867

RESUMEN

The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods.


Asunto(s)
Algoritmos , Modelos Teóricos
17.
PLoS One ; 9(7): e101675, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25003525

RESUMEN

In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.


Asunto(s)
Algoritmos , Modelos Teóricos , Red Social , Humanos
18.
PLoS One ; 9(7): e103007, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25072242

RESUMEN

How does reciprocal links affect the function of real social network? Does reciprocal link and non-reciprocal link play the same role? Previous researches haven't displayed a clear picture to us until now according to the best of our knowledge. Motivated by this, in this paper, we empirically study the influence of reciprocal links in two representative real datasets, Sina Weibo and Douban. Our results demonstrate that the reciprocal links play a more important role than non-reciprocal ones in information diffusion process. In particular, not only coverage but also the speed of the information diffusion can be significantly enhanced by considering the reciprocal effect. We give some possible explanations from the perspectives of network connectivity and efficiency. This work may shed some light on the in-depth understanding and application of the reciprocal effect in directed online social networks.


Asunto(s)
Modelos Teóricos , Red Social , Apoyo Social , Algoritmos , Conjuntos de Datos como Asunto , Humanos
19.
PLoS One ; 9(4): e95785, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24763456

RESUMEN

Recently, contagion-based (disease, information, etc.) spreading on social networks has been extensively studied. In this paper, other than traditional full interaction, we propose a partial interaction based spreading model, considering that the informed individuals would transmit information to only a certain fraction of their neighbors due to the transmission ability in real-world social networks. Simulation results on three representative networks (BA, ER, WS) indicate that the spreading efficiency is highly correlated with the network heterogeneity. In addition, a special phenomenon, namely Information Blind Areas where the network is separated by several information-unreachable clusters, will emerge from the spreading process. Furthermore, we also find that the size distribution of such information blind areas obeys power-law-like distribution, which has very similar exponent with that of site percolation. Detailed analyses show that the critical value is decreasing along with the network heterogeneity for the spreading process, which is complete the contrary to that of random selection. Moreover, the critical value in the latter process is also larger than that of the former for the same network. Those findings might shed some lights in in-depth understanding the effect of network properties on information spreading.


Asunto(s)
Difusión de la Información , Simulación por Computador , Humanos , Red Social
20.
PLoS One ; 9(3): e91070, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24622162

RESUMEN

In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model.


Asunto(s)
Gravitación , Modelos Teóricos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...