Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Arch Esp Urol ; 77(3): 284-291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38715170

RESUMEN

BACKGROUND: The management of medication for patients undergoing urological surgery is a subject of ongoing controversy, especially in elucidating the effect of clinical pharmacists on medication rationality. This study aims to assess the influence of clinical pharmacist service on the utilization of antibacterial and hepatoprotective drugs in urological surgery patients during the perioperative period. METHODS: Patients undergoing urological surgery in our hospital from January 2020, to January 2023, were consecutively selected. The patients were divided into control group (routine procedure) and observation group (routine procedure + clinical pharmacist service). The baseline data were balanced by 1:1 propensity score matching (PSM). The t test and chi-square test were used to compare the drug use, adverse reactions, and hospitalization-related indicators between the two groups. RESULTS: A total of 292 patients were included, with 100 patients in each group after PSM. No significant difference was found in the baseline data between the two groups (p > 0.05). The rationality of drug use (drug type, administration time, course of treatment, and combination) in the observation group was significantly better than that in the control group (χ2 = 8.489, 10.607, 10.895, 10.666; p = 0.004, 0.001, 0.001, 0.001). The incidence of adverse reactions (6.00%) and postoperative complications (7.00%) was significantly lower (χ2 = 4.903, 5.531; p = 0.027, 0.019). The length of hospital stay and total cost were similar (p > 0.05). The use time and cost of antibacterial and hepatoprotective drugs in the observation group were lower than those in the control group (t = 2.935, 3.450, 3.243, 3.532; p = 0.004, 0.001, 0.001, 0.001). The types and rates of antibacterial and hepatoprotective drugs in the observation group were significantly lower than those in the control group (p < 0.05). CONCLUSIONS: Clinical pharmacist service can effectively improve the rationality of drug use in urological surgery patients and reduce adverse reactions and postoperative complications, hence its clinical promotion value.


Asunto(s)
Antibacterianos , Servicio de Farmacia en Hospital , Humanos , Estudios Retrospectivos , Masculino , Femenino , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Persona de Mediana Edad , Anciano , Procedimientos Quirúrgicos Urológicos , Farmacéuticos , Atención Perioperativa , Periodo Perioperatorio , Servicio de Urología en Hospital
2.
Nat Commun ; 15(1): 3086, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600063

RESUMEN

Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.


Asunto(s)
Prótesis Visuales , Biónica , Retina , Visión Ocular , Percepción Visual
3.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570876

RESUMEN

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Asunto(s)
Trastorno Autístico , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
4.
Heliyon ; 10(3): e24852, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317903

RESUMEN

Glaucoma is a complex multifactorial disease. Oxidative stress has been implicated in its pathogenesis. However, establishing a causal relationship between oxidative stress and glaucoma is challenging due to confounding and reverse causality. In this study, we performed bidirectional two-sample Mendelian randomization (MR) analyses based on genetic instrumental variables as proxies for 11 biomarkers of oxidative stress injury to investigate the causal relationship between oxidative stress and glaucoma. Eight significant associations were identified. Increased circulating levels of catalase (OR = 0.915, 95 % CI: 0.848-0.987, P = 0.022), retinol (OR = 0.481, 95 % CI: 0.248-0.932, P = 0.044) and superoxide dismutase (OR = 0.779, 95 % CI: 0. 616-0.986, P = 0.038) are associated with a decreased risk of glaucoma, whereas an increased myeloperoxidase level (OR = 2.145, 95 % CI: 1.119-4.111, P = 0.029) is associated with an increased risk of glaucoma. Glaucoma was causally associated with lower levels of total bilirubin (OR = 0.961, 95 % CI: 0.927-0.997, P = 0.039), glutathione peroxidase (OR = 0. 934, 95 % CI: 0.890-0.981, P = 0.006), paraoxonase (OR = 0.883, 95 % CI: 0.810-0.963, P = 0.005) and albumin (OR = 0.988, 95 % CI: 0.978-0.998, P = 0.014). The bidirectional MR analysis revealed a causal relationship between oxidative stress and glaucoma. These findings provide a greater understanding of the underlying mechanisms of glaucomatous neurodegeneration and imply a potential therapeutic approach for glaucoma through targeting oxidative stress pathways.

5.
Neuron ; 112(6): 909-923.e9, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38242115

RESUMEN

Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.


Asunto(s)
Encéfalo , Dopamina , Ratones , Animales , Encéfalo/fisiología , Cuerpo Estriado , Neostriado , Optogenética/métodos
6.
BMJ Open Ophthalmol ; 9(1)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286567

RESUMEN

OBJECTIVE: Evidence from observational studies has reported possible associations between the gut microbiome (GM) and glaucoma. However, the causal effect of GM on glaucoma risk remains to be determined. METHODS AND ANALYSIS: We conducted two-sample bidirectional Mendelian randomisation (MR) analyses to explore the causal association between GM and glaucoma. Genome-wide association study summary statistics of 196 GM taxa (n=18 340) and glaucoma (18 902 cases and 358 375 controls) were obtained from MiBioGen and FinnGen Consortium. Inverse variance weighted, MR-Egger, weighted median, weighted mode, Mendelian Randomisation Pleiotropy Residual Sum and Outlier, MR-Egger intercept and Cochran's Q statistical analyses were used to supplement MR results and sensitivity analysis. An independent cohort from the Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (MRC-IEU) Consortium (1715 cases and 359 479 controls) was used to validate causal effects. RESULTS: Results of the MR analysis suggested that the family Oxalobacteraceae (OR 0.900, 95% CI 0.843 to 0.961, p=0.002) and the genus Eggerthella (OR 0.881, 95% CI 0.811 to 0.957, p=0.003) had a negative effect on glaucoma, whereas the genus Bilophila (OR 1.202, 95% CI 1.074 to 1.346, p=0.001), LachnospiraceaeUCG010 (OR 1.256, 95% CI 1.109 to 1.423, p=0.0003) and Ruminiclostridium 9 (OR 1.258, 95% CI 1.083 to 1.461, p=0.003) had a positive effect on glaucoma. Among these, the positive causal effect of LachnospiraceaeUCG010 (OR 1.002, 95% CI 1.000 to 1.004, p=0.033) on glaucoma was replicated in an independent cohort. CONCLUSION: This MR analysis from large population studies demonstrated the causal effect of GM on glaucoma risk and supported the role of GM in influencing glaucoma susceptibility.


Asunto(s)
Actinobacteria , Microbioma Gastrointestinal , Glaucoma , Humanos , Causalidad , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Glaucoma/epidemiología , Análisis de la Aleatorización Mendeliana
7.
BMC Psychiatry ; 24(1): 16, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172785

RESUMEN

BACKGROUND: Observational studies have suggested the potential associations between atopic dermatitis (AD) and psychiatric disorders. However, the causal relationship between them remains uncertain. This study aimed to evaluate the potential bidirectional causal relationship between AD and psychiatric disorders, including autism spectrum disorder (ASD), major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BD), anorexia nervosa (AN), Tourette syndrome (TS), schizophrenia, and anxiety. METHODS: Bidirectional two-sample Mendelian randomization (MR) was employed to elucidate the causality between AD and psychiatric disorders, using summary statistics from the most comprehensive genome-wide association studies conducted on AD (Ncases = 60,653, Ncontrols = 804,329). Psychiatric disorders were derived from the Psychiatric Genomics Consortium and were independent of AD data sources. The MR analysis entailed the implementation of multiple methods, including the inverse variance weighted method, MR-Egger regression method, weighted median method, simple mode method, and weighted mode method. RESULTS: Bidirectional two-sample MR analysis uncovered significant causal associations between AD and severe psychiatric disorders. Specifically, liability to AD was associated with increased risk of ADHD (OR = 1.116; 95% CI: [1.009, 1.234]; P = 0.033) and ASD (OR = 1.131; 95% CI: [1.023, 1.251]; P = 0.016). Additionally, evidence suggested that liability to ADHD (OR = 1.112; 95% CI: [1.094, 1.130]; P = 9.20e-40), liability to AN (OR = 1.1; 95% CI: [1.068, 1.134]; P = 4.45e-10) and liability to BD (OR = 1.067; 95% CI: [1.009, 1.128]; P = 0.023) were associated with an increased risk of AD. Only the causal association between AD and ASD was independent of the reverse effect bias. These causal associations were robust and not affected by biases of heterogeneity and horizontal pleiotropy. CONCLUSIONS: Our study emphasizes the significant causal association between AD and an increased risk of ASD, and also identifying BD and AN as risk factors for AD.


Asunto(s)
Anorexia Nerviosa , Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Dermatitis Atópica , Humanos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Dermatitis Atópica/complicaciones , Dermatitis Atópica/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana
8.
NPJ Digit Med ; 7(1): 15, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238410

RESUMEN

Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer characterized by rapid tumor growth and early metastasis. Accurate prediction of prognosis and therapeutic response is crucial for optimizing treatment strategies and improving patient outcomes. In this study, we conducted a deep-learning analysis of Hematoxylin and Eosin (H&E) stained histopathological images using contrastive clustering and identified 50 intricate histomorphological phenotype clusters (HPCs) as pathomic features. We identified two of 50 HPCs with significant prognostic value and then integrated them into a pathomics signature (PathoSig) using the Cox regression model. PathoSig showed significant risk stratification for overall survival and disease-free survival and successfully identified patients who may benefit from postoperative or preoperative chemoradiotherapy. The predictive power of PathoSig was validated in independent multicenter cohorts. Furthermore, PathoSig can provide comprehensive prognostic information beyond the current TNM staging system and molecular subtyping. Overall, our study highlights the significant potential of utilizing histopathology images-based deep learning in improving prognostic predictions and evaluating therapeutic response in SCLC. PathoSig represents an effective tool that aids clinicians in making informed decisions and selecting personalized treatment strategies for SCLC patients.

9.
Angew Chem Int Ed Engl ; 63(4): e202315061, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37966368

RESUMEN

The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.

10.
Adv Mater ; 36(3): e2305580, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882079

RESUMEN

Charge trap materials that can store carriers efficiently and controllably are desired for memory applications. 2D materials are promising for highly compacted and reliable memory mainly due to their ease of constructing atomically uniform interfaces, however, remain unexplored as being charge trap media. Here it is discovered that 2D semiconducting PbI2 is an excellent charge trap material for nonvolatile memory and artificial synapses. It is simple to construct PbI2 -based charge trap devices since no complicated synthesis or additional defect manufacturing are required. As a demonstration, MoS2 /PbI2 device exhibits a large memory window of 120 V, fast write speed of 5 µs, high on-off ratio around 106 , multilevel memory of over 8 distinct states, high reliability with endurance up to 104 cycles and retention over 1.2 × 104 s. It is envisioned that PbI2 with ionic activity caused by the natively formed iodine vacancies is unique to combine with unlimited 2D materials for versatile van der Waals devices with high-integration and multifunctionality.

11.
ACS Nano ; 17(22): 23207-23219, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963092

RESUMEN

Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I3- attack. Moreover, the as-constructed Zn2+-enriched layer substantially facilitate rapid Zn2+ migration through the NH2-Zn2+-NH2 binding/dissociation mode of CCS molecule chain. Consequently, the large-format Zn symmetry cell (9 cm2) with a Zn-CCS electrode demonstrates excellent cycling stability over 1100 h without bulging. When coupled with an I2 cathode, the assembled Zn-I2 multilayer pouch cell displays an exceptionally high capacity of 140 mAh and superior long-term cycle performance of 400 cycles. This work provides a universal strategy to prepare large-scale production and high-performance polymer crowding layer for metal anode-based battery, analogous outcomes were veritably observed on other metals (Al, Cu, Sn).

12.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014018

RESUMEN

Neural population dynamics relevant for behavior vary over multiple spatial and temporal scales across 3-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array and imaging approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice. We developed a semi-automated micro-CT based strategy to precisely localize positions of each optical fiber. This highly-customizable approach enables investigation of multi-scale spatial and temporal patterns of cell-type and neurotransmitter specific signals over arbitrary 3-D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum volume which revealed distinct, modality specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics through our fiber arrays enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and spatial localization of behavioral function across large circuits.

13.
NPJ Biofilms Microbiomes ; 9(1): 75, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805507

RESUMEN

Plaque accumulation and microbial community changes are important causes of periodontal disease. Cleaned plaque microorganisms will reattach to form biofilms, but the recovery and outcome of plaque microbial communities in different periodontal health states remain unknown. In this study, we tracked the biofilm remodeling process in 206 dental plaque samples from 40 healthy periodontal, gingivitis and periodontitis volunteers at 6 time points before and after supragingival scaling. We found that microbial communities of different periodontal states changed asynchronously during the process, and the more severe the periodontal disease condition, the more lagged the recovery of plaque microorganisms to their original state after cleaning; this reflected a higher degree of plaque development in periodontitis samples. The plaque index and bleeding index were significantly correlated with plaque recovery, especially the recovery of bacteria such as Abiotrophia and Capnocytophaga. Meanwhile, we found that the microbial community structure of different periodontal health states was most similar at the Day 3 after plaque cleaning, and the communities gradually differentiated and developed in different directions. Abiotrophia and other bacteria might play an important role in determining the development trend of plaque biofilms. The discovery of specific time points and bacteria was of great value in clarifying the pathogenesis of periodontal disease and in seeking targets for prevention and treatment.


Asunto(s)
Gingivitis , Enfermedades Periodontales , Periodontitis , Humanos , Periodontitis/microbiología , Gingivitis/microbiología , Bacterias/genética
14.
Phys Chem Chem Phys ; 25(40): 27766-27773, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37814790

RESUMEN

Type-II van der Waals (vdW) heterostructures are regarded as the optimum candidates for unipolar electronic device applications due to their capacity for spontaneous electron-hole separation. Here, we studied the electronic properties of the AlAs/SiC vdW heterostructure via density functional theory calculations. Results show that the conduction band minimum (CBM) and valence band maximum (VBM) of this heterostructure are mainly contributed by different materials, illustrating that the AlAs/SiC heterostructure has a type-II band alignment. Interestingly, this heterostructure possesses flat valence bands near the Fermi level. In addition, under the modulation of external electric field ranging between -1 V Å-1∼0.8 V Å-1, the band gap of the heterostructure can be tuned continuously, while the band structure maintains a stable type-II band alignment with flat top valence bands. When the electric field exceeds -1 or 0.8 V Å-1, the heterostructure transitions from semiconductor material to metal, indicating the tunability of electronic properties under external fields. These results indicate that the AlAs/SiC heterostructure shows great potential for application in high-performance optoelectronic devices and a strong correlation may exist in this system.

15.
Front Nutr ; 10: 1278906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899828

RESUMEN

Background: Dysregulation of feeding behavior leads to a variety of pathological manifestations ranging from obesity to anorexia. The foraging behavior of animals affected by food deficiency is not fully understood. Methods: Home-Cage system was used to monitor the behaviors. Immunohistochemical staining was used to monitor the trend of neuronal activity. Chemogenetic approach was used to modify neuronal activity. Results: We described here a unique mouse model of foraging behavior and unveiled that food deprivation significantly increases the general activities of mice with a daily rhythmic pattern, particularly foraging behavior. The increased foraging behavior is potentiated by food cues (mouthfeel, odor, size, and shape) and energy deficit, rather than macronutrient protein, carbohydrate, and fat. Notably, energy deficiency increases nocturnal neuronal activity in paraventricular hypothalamic nucleus (PVH), accompanying a similar change in rhythmic foraging behavior. Activating neuronal activity in PVH enhances the amplitude of foraging behavior in mice. Conversely, inactivating neuronal activity in PVH decreases the amplitude of foraging behavior and impairs the rhythm of foraging behavior. Discussion: These results illustrate that energy status and food cues regulate the rhythmic foraging behavior via PVH neuronal activity. Understanding foraging behavior provides insights into the underlying mechanism of eating-related disorders.

16.
EBioMedicine ; 96: 104801, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37725855

RESUMEN

BACKGROUND: DNA damage repair (DDR) is a critical process that maintains genomic integrity and plays essential roles at both the cellular and organismic levels. Here, we aimed to characterize the DDR profiling of esophageal squamous cell carcinoma (ESCC), investigate the prognostic value of DDR-related features, and explore their potential for guiding personalized treatment strategies. METHODS: We analyzed bulk and single-cell transcriptomics data from 377 ESCC cases from our institution and other publicly available cohorts to identify major DDR subtypes. The heterogeneity in cellular and functional properties, tumor microenvironment (TME) characteristics, and prognostic significance of these DDR subtypes were investigated using immunogenomic analysis and in vitro experiments. Additionally, we experimentally validated a combinatorial immunotherapy strategy using syngeneic mouse models of ESCC. FINDINGS: DDR alteration profiling enabled us to identify two distinct DDR subtypes, DDRactive and DDRsilent, which exhibited independent prognostic values in locoregional ESCC but not in metastatic ESCC. The DDRsilent subtype was characterized by an inflamed but immune-suppressed microenvironment with relatively high immune cell infiltration, abnormal immune checkpoint expression, T-cell exhaustion, and enrichment of cancer-related pathways. Moreover, DDR subtyping indicates that BRCA1 and HFM1 are robust and independent prognostic factors in locoregional ESCC. Finally, we proposed and verified that the concomitant triggering of GITR or blockade of BTLA with PD-1 blockade or cisplatin chemotherapy represents effective combination strategies for high-risk locoregional ESCC tumors. INTERPRETATION: Our discovery of DDR-based molecular subtypes will enhance our understanding of tumor heterogeneity and have significant clinical implications for the therapeutic and management strategies of locoregional ESCC. FUNDING: This study was supported by the National Key R&D Program of China (2021YFC2501000, 2022YFC3401003), National Natural Science Foundation of China (82172882), the Beijing Natural Science Foundation (7212085), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091), and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2019PT310027).

17.
Adv Sci (Weinh) ; 10(30): e2303944, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37635198

RESUMEN

Neuromorphic vision based on photonic synapses has the ability to mimic sensitivity, adaptivity, and sophistication of bio-visual systems. Significant advances in artificial photosynapses are achieved recently. However, conventional photosyanptic devices normally employ opaque metal conductors and vertical device configuration, performing a limited hemispherical field of view. Here, a transparent planar photonic synapse (TPPS) is presented that offers dual-side photosensitive capability for nearly panoramic neuromorphic vision. The TPPS consisting of all two dimensional (2D) carbon-based derivatives exhibits ultra-broadband photodetecting (365-970 nm) and ≈360° omnidirectional viewing angle. With its intrinsic persistent photoconductivity effect, the detector possesses bio-synaptic behaviors such as short/long-term memory, experience learning, light adaptation, and a 171% pair-pulse-facilitation index, enabling the synapse array to achieve image recognition enhancement (92%) and moving object detection.

18.
Pharmacol Res ; 194: 106844, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392900

RESUMEN

Small-cell lung cancer (SCLC) is generally considered a 'homogenous' disease, with little documented inter-tumor heterogeneity in treatment guidance or prognosis evaluation. The precise identification of clinically relevant molecular subtypes remains incomplete and their translation into clinical practice is limited. In this retrospective cohort study, we comprehensively characterized the immune microenvironment in SCLC by integrating transcriptional and protein profiling of formalin-fixation-and-paraffin-embedded (FFPE) samples from 29 patients. We identified two distinct disease subtypes: immune-enriched (IE-subtype) and immune-deprived (ID-subtype), displaying heterogeneity in immunological, biological, and clinical features. The IE-subtype was characterized by abundant immune infiltrate and elevated levels of interferon-alpha/gamma (IFNα/IFNγ) and inflammatory response, while the ID-subtype featured a complete lack of immune infiltration and a more proliferative phenotype. These two immune subtypes are associated with clinical benefits in SCLC patients treated with adjuvant therapy, with the IE-subtype exhibiting a more favorable response leading to improved survival and reduced disease recurrence risk. Additionally, we identified and validated a personalized prognosticator of immunophenotyping, the CCL5/CXCL9 chemokine index (CCI), using machine learning. The CCI demonstrated superior predictive abilities for prognosis and clinical benefits in SCLC patients, validated in our institute immunohistochemistry cohort and multicenter bulk transcriptomic data cohorts. In conclusion, our study provides a comprehensive and multi-dimensional characterization of the immune architecture of SCLC using clinical FFPE samples and proposes a new immune subtyping conceptual framework enabling risk stratification and the appropriate selection of individualized therapy.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Pronóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Microambiente Tumoral
19.
Oncogenesis ; 12(1): 37, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433793

RESUMEN

Immune checkpoint blockade (ICB) therapies have brought unprecedented advances in cancer treatment, but responses are limited to a fraction of patients. Therefore, sustained and substantial efforts are required to advance clinical and translational investigation on managing patients receiving ICB. In this study, we investigated the dynamic changes in molecular profiles of T-cell exhaustion (TEX) during ICB treatment using single-cell and bulk transcriptome analysis, and demonstrated distinct exhaustion molecular profiles associated with ICB response. By applying an ensemble deep-learning computational framework, we identified an ICB-associated transcriptional signature consisting of 16 TEX-related genes, termed ITGs. Incorporating 16 ITGs into a machine-learning model called MLTIP achieved reliable predictive power for clinical ICB response with an average AUC of 0.778, and overall survival (pooled HR = 0.093, 95% CI, 0.031-0.28, P < 0.001) across multiple ICB-treated cohorts. Furthermore, the MLTIP consistently demonstrated superior predictive performance compared to other well-established markers and signatures, with an average increase in AUC of 21.5%. In summary, our results highlight the potential of this TEX-dependent transcriptional signature as a tool for precise patient stratification and personalized immunotherapy, with clinical translation in precision medicine.

20.
Int J Antimicrob Agents ; 61(6): 106801, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37019242

RESUMEN

Periodontitis is caused by oral flora imbalance, which leads to immune imbalance. Porphyromonas gingivalis is a keystone pathogen in periodontitis, causing the blooming of inflammophilic microbes, and becoming dormant to resist antibiotics. Targeted interventions are needed to destroy this pathogen and collapse its inflammophilic flora. Therefore, a targeting nanoagent antibody-conjugated liposomal drug carrier with ginsenoside Rh2 (A-L-R) was developed for pleiotropic benefits. A-L-R showed high quality in high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR), and transmission electron microscope (TEM) detection. Only P. gingivalis was influenced by A-L-R, as shown by live/dead cell staining and a series of antimicrobial effects assays. With fluorescence in situ hybridization (FISH) staining and in propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), the clearance of P. gingivalis by A-L-R was more than for other groups, and only the proportion of P. gingivalis was reduced by A-L-R in monospecies culture. Moreover, in a periodontitis model, A-L-R targeted P. gingivalis with high efficiency and low toxicity, maintaining homeostasis with a relatively stable oral microflora. This targeting nanomedicine offers new strategies for periodontitis therapy, providing a foundation for the prevention and treatment of periodontitis.


Asunto(s)
Periodontitis , Porphyromonas gingivalis , Humanos , Porphyromonas gingivalis/genética , Hibridación Fluorescente in Situ , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Periodontitis/prevención & control , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...